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Abstract

This dissertation describes my research into supporting the use of near-optimal protein sequence

alignments by biologists. The research involves contributions to bioinformatics (investigating the

relationship of near-optimal alignments to structural alignments) and cognitive systems engineering

(developing a near-optimal sequence alignment solution space analysis system). The bioinformatics

contributions show that the variation between structural alignments compares favorably with that of

near-optimal alignments. The results indicate that analyzing near-optimal alignments can be used

for developing higher quality homology models for sequences without known tertiary structure.

This research further explores the relationship between structural and near-optimal alignments by

developing a logistic regression model that predicts whether or not aligned pairs of amino acids in

a set of near-optimal alignments are likely to be found in structural alignments. This work adds

to cognitive systems engineering by demonstrating an effective system for supporting biologists

in the exploration of large sets of near-optimal alignments. This support comes in the form of

alignment visualization techniques and facilities for mixed-initiative interaction. Two visualizations

were created, an animated pairwise alignment and a zoomablepath graph, which provide alternative

perspectives on sets of near-optimal alignments. A mixed-initiative interaction scenario is created

by allowing users to dynamically edit and adjust alignments, which creates a feedback loop. This

provides further insight into the alignment generation algorithms. The visualization techniques take

advantage of the biological insights developed in the first section of this research to further increase

the usefulness of the system. Two case studies demonstrate the utility of the near-optimal alignment

solution space analysis system. One case study describes the use of our visualization and analysis

system to confirm the homology of two distantly related proteins, Lacritin and Dermcidin. The sec-
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ond case study describes how the visualization options, filtering, and mixed-initiative features of the

system facilitated the development of anO(n) space near-optimal alignment generation algorithm.
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Chapter 1

Introduction

This research involves the study of near-optimal protein sequence alignments and aims to support

biologists using the output of imperfect models. The motivation for this research stems from the

reality that mathematical models fail to account for all of the variables, parameter values and con-

straints inherent in the phenomena they attempt to model. The simplifying assumptions inherent in

the sequence alignment model can lead to results that are incorrect from a biological perspective.

Therefore, the goal of this research is to better understandhow the sequence alignment model,

however flawed, can be used to better understand a protein alignments.

Proteins are responsible for most functions in living organisms. As a consequence, biologists are

frequently interested in determining the function of unknown proteins isolated during experimen-

tation. One way to do this is to compare unknown proteins withknown ones. If two proteins are

sufficiently similar, then it is likely that the two proteinsare homologous (meaning they share a

common ancestor) and therefore function in a similar way. The greater the similarity between the

proteins is, the more recent their common ancestor and vice versa. By understanding this relation-

ship, scientists can direct further research into the unknown proteins.

Proteins consist of long chains of amino acid residues that fold into 3-dimensional structures. The

linear chain of amino acids is called the protein’s sequenceor primary structure and is the basis

for most bioinformatics analysis. Sequence alignment has been used for more than 30 years as a

fundamental tool in biology. A sequence alignment is simplyan attempt to match the characters

representing one sequence with the corresponding characters in a second sequence. The general
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goal of alignment is to understand how similar or dissimilarone sequence is from the other. The

most common usage is to detect homologous sequences in a database of DNA or protein sequences

[1][2]. Once homology is established with a known sequence,inferences can be made about the

structure, function, and significant residues of the unknown sequence. However, these inferences

are often critically dependent upon the quality of the alignment between the two sequences. The

usual gold standard by which sequence alignments are assessed is the structural alignment between

the two proteins. This is a reasonable standard, since the three-dimensional structure contains more

information than the one-dimensional sequence, and is ultimately required for a full description of

a protein’s function. Conversely, sequence based alignments are used to create homology models of

protein families when only incomplete structural information is available.

Alignments in general, and protein sequence alignments in particular, are entirely abstract con-

structions. There is no natural process by which two different protein sequences align themselves.

Alignment algorithms are mathematical models used to aid our understanding of the relationships

between different sequences. This means there is no “right”or “correct” or “optimal” alignmentas

there is no absolute standard by which to evaluate an alignment. From a mathematical perspective,

this makes the problem of sequence alignment ill-posed [3].This does not, however, impede the

biologist from extracting useful information from a reformulated model. By slightly changing the

problem statement (such as treating amino acid position as if it were independent, allowing a con-

stant rate of evolution), we can have a well posed problem yielding models that can be optimized

[4][5]. To do so, a trade-off has been made with the implicit acknowledgment that an optimal

solution to the well posed model is still only an approximation of what is necessary for the analysis.

While this model can be optimized according to a particular metric, there is still no algorithmic way

to determine whether an alignment is biologically sensible. Only a scientist with a deep understand-

ing of the domain can accurately determine whether a particular alignment makes sense. We do not

view this lack of standard as a problem, because the goal of sequence alignment is not to produce a

solution, but rather to develop insight and understanding of the sequences involved.

Given this incomplete model of optimal sequence based algorithms, it seems reasonable to expect

that the algorithms will create alignments that make no biological sense in certain circumstances.
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Optimal sequence based algorithms are known to misalign keyfunctional residues1 [6]. In these sit-

uations, the alignment model has insufficient information to properly align the sequences. Missing

is the knowledge (generally derived through physical experiments, possibly including the identifi-

cation of the 3-dimensional structures of the proteins) that particular residues must align. Despite

these failures, the many successful alignments thatareproduced lead us to believe that the incorrect

alignments are close to being correct. That is, small changes in the alignment would improve the

alignment from a biological perspective. Therefore, in cases where misalignments occur, we be-

lieve it is reasonable to search in a neighborhood surrounding the optimal solution (the near-optimal

solution space) for a solution that does not share the same failures. Near-optimal alignments are

sequence based alignments with scores that fall within a certain threshold of the algorithmically

optimal score [7][8][9][10].

The goal of this work is to enhance our understanding of protein sequence alignments through

the use of near-optimal alignments. The hypothesis explored in this dissertation is that a set of

near-optimal solutions contains more information than a single algorithmically optimal alignment.

Specifically, we hypothesize that near-optimal solutions can be used to further our understanding of

3-dimensional structural characteristics of proteins without having the actual 3-dimensional struc-

ture. In addition, we explore different visualization and control techniques that facilitate viewing

and comprehension of sets of near-optimal alignments.

The dissertation contains four chapters that constitute the contribution to Bioinformatics and Sys-

tems Engineering followed by a concluding chapter. Chapter2 describes the comparison of sets

of near-optimal alignments with alternative structural alignments. This research demonstrates that

sets of near-optimal alignments compare favorably to structural alignments. The results described

in Chapter 2 motivate the research in Chapter 3. In Chapter 3 we develop a probabilistic model

that predicts whether pairs of amino acids can be expected toalign in structural alignments based

on metrics derived from sets of near-optimal alignments. Chapter 4 describes the system developed

for researchers to generate, visualize, and study near-optimal alignments. We describe the novel vi-

sualization techniques and algorithms developed to facilitate this study. Chapter 5 relates two case

1 Residue is short for amino acid residue.
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studies that demonstrate how the visualization software has been successfully used in real-world

scientific discovery. Finally, Chapter 6 concludes the dissertation.

This research enhances our understanding of the relationship between sequence based and structural

alignments and provides guidance that aids in the exploration and understanding of near-optimal

alignments. The research manifests itself in a system that supports the display and exploration of

near-optimal solution space.

A subset of the research presented in Chapter 4 and 5 has been published in [11] and another paper

is in press [12]. Another manuscript describing the work in Chapters 2 and 3 is in the final stages of

preparation.

1.1. Background and Significance

1.1.1. The Importance of Sequence Based Alignments in Modern Biology

Proteins are the building blocks of life. Ranging from enzymes that aid in digestion, to hemoglobin

which transports oxygen in the blood, to the various structural proteins that comprise our muscles

and bone, proteins are central to almost all aspects of biology. Protein molecules consist of spe-

cific sequences of amino acids which fold into 3-dimensionalshapes that determine the function

of the proteins. The twenty amino acids have a variety of chemical properties (e.g., acidic/basic,

positive/negative charge, hydrophilic/hydrophobic) that, when combined, allow for the vast array of

functions that proteins perform. The sequence of amino acids is referred to as the primary structure

of a protein while the 3-dimensional shape the sequence folds into is referred to as the tertiary

structure2 [13]. The primary structure of a protein is relatively cheapand easy to find while finding

the tertiary structure is substantially more expensive andtime consuming. This is reflected in the

number of sequences available compared to the number of protein structures available. There are far

2 Secondary structure is the local packing of amino acids according to how hydrogen bonds form between the CO
and NH of different amino acid residues. Secondary structures are eitheralpha heliceswhere hydrogen bonds between
every fourth residue form helical shapes orbeta sheetswhere hydrogen bonds form between adjacent strands creating
sheet-like shapes. Quaternary structure is when two or moreseparate strands of amino acids fold together into a single
structure.
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fewer known protein structures (28,648 structures as of December 7, 2004 in the Protein Data Bank

[14]) than there are protein sequences (1,917,944 entries as of December 4, 2004 in the PIR-NREF

[Protein Information Resource Non-redundant Protein Reference] database [15]). Contrast this with

20,533 structures and 976,519 sequences as of April 1, 2003 and it should be clear why we expect

this trend to continue into the foreseeable future. Given this difference, the ability to predict the

tertiary structure of a protein (and thus function) based only on a sequence of amino acids is very

desirable. This, however, is an extremely difficult problem. While it is believed that sequence

implies structure, we do not have a good understanding of themechanism that proteins use to fold

into their 3-dimensional structure [16]. This means we are not able to make accurate predictions of

structure or function. Many efforts are underway to understand protein folding and structure pre-

diction [17]. Many would argue that accurately predicting structure and function from a sequence

of amino acids is the holy grail of modern biology.

While we may not yet be able to predict structure from sequence, there is much to be learned from

studying protein sequences. The fundamental computational tool for analyzing sequences is the

sequence alignment [18]. Alignments are a way of comparing one sequence to another and making

inferences about unknown proteins. Among other activities, they are used for establishing rela-

tionships between sequences [19], establishing homology [20] and for sequence database searching

[1][2]. Sequence alignment is therefore a fundamental activity in modern biological research.

While finding protein structures is a costly process, we do know the structures of several thousand

important proteins. If we do happen to have the structures oftwo proteins being aligned, then it is

possible to create astructural alignment. Structural alignment algorithms attempt to account for the

3-dimensional position of each amino acid when the alignment is being generated [21]. Because

structural alignments account for more information about the proteins, they are thought to be su-

perior to sequence based alignments. Aside from the relative unavailability of protein structures,

the largest source of difficulty with structural alignment algorithms is that the additional informa-

tion available for constructing the alignment increases the dimensionality of the problem such that

heuristic algorithms are required to produce alignments. This means that there are several alternative

structural alignment algorithms that each produce different alignments.
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Given the expense of solving structures directly and our inability to predict structure, the current

approach taken by the various high-throughput structural genomics projects is to solve as few struc-

tures as possible while ensuring that a homology model of sufficient quality can be constructed for

every sequence. Current methods allow high-quality modelsto be produced when the sequence

identity3 is ~40% or higher, but statistically significant (E() < 10−2) homology can be detected

below 20% sequence identity, which leaves a large number of known homologs for which reliable

models cannot currently be built. The biggest hurdle facingstructure predictors in this range of se-

quence similarity is the accuracy of the alignment. After picking the proper template molecule, the

next most important step in producing an accurate model is generating a biologically correct align-

ment between the template and sequence to be modeled. There is widespread agreement that most of

the modeling efforts that fail in the 20-40% identity range fail due to poor alignment quality (align-

ments between sequences with >40% identity generally correspond closely with the structure-based

alignment). Thus much effort has been spent attempting to improve alignment accuracy in this area

of sequence similarity space.

This research uses sequence based alignments of proteins tohelp us further our understanding of

the relationship between sequence based and structural alignments. This knowledge is a small step

in the effort to predict or understand protein structure without knowledge of the structure.

1.1.2. Humans, Visualization, and Automation

The goal of this research, from a cognitive systems engineering perspective, is to study ways in

which to make imperfect system models more useful. This research involves the integration of

automation, information visualization, and human judgment.

We know that algorithmically optimal sequence alignments sometimes fail to align key functional

residues [6]. Two complementary approaches address this problem. One involves improving the

alignment algorithm and many such attempts have been made, with varying degrees of success

[20][22]. The alternative explored here is the support of human expertise when generating and

3 The percentage of amino acids that are aligned with identical amino acids.
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interpreting results. Our approach involves presenting the researcher with a set of alternative align-

ments rather than a single “optimal” alignment. It is important to emphasize the point that we are

not seeking one “correct” alignment, but rather using a solution space to enhance our understanding

of the relationship between two sequences. The system we developed is therefore not precisely

a decision support system, although it shares many characteristics that a decision support system

might have.

Much of this research involvesinformation visualization, which should be distinguished fromsci-

entific visualization. Card, et al. [23] defines scientific visualization as an attempt to represent a

physical system on a display medium. In contrast, information visualization attempts to create a

visual representation ofabstractdata with no natural or underlying physical form. The canonical

example of information visualization is the simple XY scatter plot. While biological sequences have

clear physical representations, alignments have no physical analogs and thus must be considered an

exercise in information visualization.

As a way of presenting alternative alignments, this research explores the use of animation. The use

of animation is common in scientific visualization as the need to express movement and change over

time is necessary for accurate representations of real world systems. There seems to be relatively

little use of animation in information visualization. As inthe representation of real systems, anima-

tion is used to assist users in maintaining context awareness as the state of an abstract representation

changes [24]. Perhaps the most common use of animation of abstract data is in the animation of

computer science algorithms [25]. However, even in these situations the animation of the quick

sort algorithm is not strictly information visualization as the task of ordering something by size has

many clear physical analogs. Even the visualization of sequence alignments has some connection

to the physical world, because all biological sequences have physical shapes.

While there is no literature directly related to the animation of near-optimal alignments, there is

substantial support for the use of animation. Adding a time dimension to representations of physical

systems can help comprehension and communication [26]. It is well understood that vision is a

high bandwidth sensory organ [27]. However, the use of size,shape, and color limit the amount

of information that can be displayed on one computer screen.The use of motion can increase
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the bandwidth of one screen [28]. One example is the visualization of causal relationships [29].

Imagine one circle on a screen moving until it intersects with a second, stationary circle, the first

circle stopping and second circle moving in the same direction. The inference to be made is that

the first circle struck and therefore caused the second circle to move. Likewise, animation is used

to signal transitions from one state or phase to another [26][30].

Of course, not everyone is convinced that animation is helpful. Specifically, Tversky et al. claim

that animation does not facilitate learning [31]. The source of their complaint is that most studies

that claim to compare the same data represented in static andanimated graphics, in fact, show

two different sets of data. That is, the animation shows moredata than the static graphic does

and thus there is no way of determining if the improvement in animated displays is the result of

the animation or the extra data present. Regardless, thereis an improvement in the amount of

information communicated, which supports the notion of animation increasing bandwidth [28].

Closely related to information visualization is the art of visual data mining or visual data exploration.

Visual data mining attempts to couple human perceptual capabilities with data and computational

power to help induce useful models [32]. Beyond simply providing a visual representation of data,

visual data mining attempts to uncover patterns and relationships in data that otherwise would have

been obscured. Human perception is a powerful resource thatis particularly amenable in situations

where algorithms and computers have difficulty such as with noisy or non-homogeneous data or

when the consumers of data are not trained in the mathematical and statistical methods necessary

to interpret certain models. The process of visual data mining or exploration is usually construed to

have a three step process: first overview, second zoom and filter, and finally detailed presentation

as needed [33]. Part of this research focuses on the use of information visualization techniques that

exploit human pattern recognition capabilities to help avoid problems in sequence alignment such

as misaligned residues.

One of the key difficulties with near-optimal sequence alignments is the large number of alternative

solutions produced. In contrast with visual data mining, the notion of exploring a solution space

seems somewhat less developed. One example is for airplane route finding software [34]. Like se-

quence alignment, the routing system described uses a dynamic programming algorithm to generate
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alternative solutions and, like our system, presents the alternatives to a user. Another example is

the use of a browsing metaphor for comparing alternative CAD(computer aided design) generated

estimations of hand drawn figures [35]. Other research looksat using visualizations and human

knowledge to assist in computationally hard problems by suggesting regions for search and helping

a computer out of local minima [36]. The common thread in these efforts and with this research is

that in each case there is a large possible solution space with visual representations that are amenable

to human interpretation.

The goal of all visualization efforts is to combine human perceptual capabilities with data and

computational power to produce outcomes that are greater than the sum of their parts. Joint cognitive

systems [34] reflect an approach to decision support systemsthat couple human decision making

ability with the computational power of computers. However, it is well known that automation is a

double edged sword. Computer automation can accomplish things that no human can hope to, yet

automation can adversely affect our situational awareness[37], lull us into a sense of complacency

[38] and frequently annoy [39]. Rather than just a human or just a computer making decisions,

joint cognitive systems are an attempt to balance the strengths of humans and computers to create

more effective problem solving and decision making systems. The misalignment of key functional

residues in sequence alignment is an example where automatic techniques fail in the bioinformatics

domain. We believe that with the introduction of human expertise by visualizing and generating

alternative alignments, we can develop a system that will help create more biologically sensible

alignments.

Levels of computer automation are generally classified on a scale ranging from maximum automa-

tion where a computer does everything without any input fromor feedback to the human to no

automation where a human must make all decisions and performall actions [40]. Most decision

support systems are built around a particular model of automation and tend to stay within a given

level. Mixed-initiative systems are systems that allow formultiple levels of automation within a

single system [41]. This means that users can, at one point, rely (or not) on a certain level of

automation yet can change that level as circumstances demand. An idealized scenario allows a

human to offload work to an automated system when the human is too busy or pressured to properly

manage it. Other systems switch between user initiated actions and automatic action depending on
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context and underlying plans available to the automation [42]. This system provides for various

levels of automation and the ability to switch between levels. Specifically, users can edit their

own alignments and have the alignments evaluated using the same criteria as those generated using

automatic methods.

This work takes advantage of the coupling of overview and detail displays, a topic that has been

studied in other domains as a way of increasing situational awareness and facilitating navigation

[43][44]. Previous systems with such overview and detail displays are frequently discussed in the

context of decision support roles [45][46] or in terms of browsing [47]. While our system is neither

a decision support tool nor a browser, evidence suggests that the coupling of overview and detailed

information, whether by separate panes [47] or zooming [48], show improved performance over

single view, static displays.

The integration of other features into these different representations can improve the overall system.

Alignment Viewer [49][50], a tool for viewing the results ofDNA sequence database searches,

uses animation, filtering, zooming, and icons to display large numbers of search results and to

communicate different information about alignments. For example, their use of filtering can dy-

namically constrain the results presented to the user. Their comb metaphor accomplishes what our

similarity/identity highlight does and it is easy to see howthe comb metaphor could be used to

communicate conserved regions or robustness. This provides evidence that our protein sequence

alignment tool may also benefit from the integration of thesefeatures. While our system shares

many of the same techniques used by the Alignment Viewer, thedomains (DNA search results vs.

protein sequence alignments) are different enough that a direct comparison is not possible.

1.2. Prior Results in Near-optimal Sequence Alignment

1.2.1. Near-optimal Alignment Generation

Sequence based alignment algorithms are variations on shortest path dynamic programming algo-

rithms. The models introduced by Needleman and Wunsch [5] and refined by Smith and Waterman
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[4] view the alignment of two sequences as a set of operationsperformed on one sequence that

transform it into a second sequence. The operations arematch(the amino acids are the same and

thus make no change),substituteone amino acid for another,insert a new amino acid into the

sequence, anddeletean amino acid from the sequence. Each operation is given a score and then all

operations are summed to produce an overall alignment score. Optimal solutions for thismodelcan

be found. In general, sequence alignment algorithms that produce one optimal solution areO(n2)

in time and, as traditionally implemented, areO(n2) in space, although modern implementations

[51] areO(n) in space.

Depending on whether the alignment is local or global, the alignment score is referred to as the

Smith-Waterman scoreor the Needleman-Wunsch score, respectively. Aglobal alignmentis an

alignment that aligns the entirety of two sequences. Alocal alignmentis the alignment of two high

scoring subsequences of the original sequences. The score for matching and substituting amino

acids are calculated according to predefined transition scoring matrices [52][53] which are empiri-

cally derived from manually created alignments of well studied proteins. The matrices contain the

log-odds that one amino acid will evolve into another. Insertions and deletions are often referred to

asindelsbecause an insertion in one sequence is a deletion from the other and vice versa. Indels are

represented in alignments as gaps (usually a ’-’ character)in one or the other sequence so we there-

fore talk aboutgap penaltieswhen referring to how insertions and deletions are accounted for in an

alignment score. Gap penalties are calculated according toan affine function where(score) = (gap

creation penalty) + (gap extension penalty) * (number of gaps). More complicated functions have

been proposed [22], but affine penalties are both easy to understand and computationally tractable.

The combination of scoring matrix and gap penalties are referred to as the scoring parameters for

an alignment.

The extent to which two sequences align is measured in two ways. The first measure is percent

identity ( also referred to as sequence identity), which is the number of amino acids in the alignment

that align with an identical amino acid in the other sequencedivided by the length of the alignment.

Despite being intuitive, percent identity is not statistically rigorous. For this, we have the expectation

value of the alignment. This is the expectation that an alignment of this quality can be expected to be

found in a given database of protein sequences [54]. Expectation is calculated as part of a database
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search [2][1] and expectation values are generally presented in terms of the database used to do the

search.

Standard sequence alignment algorithms return only one algorithmically optimal solution. This is

often a misleading result because in most alignments there are multiple alignments with the same

optimal score. For this reason and because algorithmicallyoptimal alignments are known to be

incorrect in certain cases (i.e. functional residues not aligned), people have proposed exploring the

near-optimal solution space [10]. Near-optimal alignmentgeneration algorithms have been well

understood for some time. Waterman and Byers developed an elegant algorithm for enumerating

all alignments within a certain distance of optimal [7]. Thedifficulty with using all near-optimal

alignments is that there are so many of them. Even sequences of modest length and similarity can

produce many millions of alignments within a neighborhood close to optimal. To accommodate this,

Zuker proposed an algorithm based on suboptimal points [10]for generating a diverse sample of

near-optimal solutions [8]. This algorithm is based on his work in RNA folding [55]. Shortly there-

after, Saqi and Sternberg proposed another algorithm for generating a sample of alignments with

the goal to produce alignments that are different from one another [56] using a method similar to

that of Waterman and Eggert [57]. During the traceback phaseof the algorithm, the Saqi-Sternberg

method penalizes any edges4 used so that on the next iteration, the alignment is less likely to reuse

the edges already part of an alignment. These methods produce samples substantially smaller than

Waterman-Byers would generate, usually anywhere from one or two dozen to several hundred.

1.2.2. Near-optimal Alignment Analysis

The use and analysis of near-optimal sequence alignments was detailed in a survey paper by Vingron

in 1996. The primary use of near-optimal alignments has beento assess the reliability of different

regions of an alignment [10]. Vingron and Argos introduced the notion of robustness [58], which

is a measure for each edge in an alignment. The robustness of an edge is the difference between an

optimal alignment that includes that edge and the best alignment that does not include that edge. The

4 In this document, we refer to a pair of aligned amino acids as an edge. This terminology results from considering
a set of alignments as a directed, acyclic path graph [9]. Each amino acid aligned with another amino acid or a gap
represents one edge in the path graph. A single alignment is represented as one path through the path graph. The arrows
in Figure 1.3 point to one edge that represents the alignmentof the two amino acids at the opposite ends of the arrows.
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greater the difference, the more robust a particular edge isbecause the more necessary that edge is to

produce a high alignment score. Mevissen and Vingron introduced a relatively fast (O(n2)) method

for calculating robustness [59]. Their paper discusses theuse of robustness as a reliability index.

They show that alignment edges with high robustness have a higher probability of being correctly

aligned according to a single structural alignment. While making use of near-optimal techniques,

their methods are only ever applied to single algorithmically optimal alignments.

Marchler-Bauer et al. [60] performed an analysis that compares the alignment of protein domains

in the SMART [61] and PFAM [62] databases5 with VAST[63] alignments. Their conclusion is that

sequence based and structural algorithms compare favorably with only a few common problems.

Structural flexibility6 was shown to cause structural alignments to fail for entire domains, but their

research does not show evidence of small failures, that is functional sites misaligning. Their research

provides further evidence that regions of low sequence identity are difficult for sequence based

alignments to manage.

1.2.3. Near-optimal Alignment Visualization

Visualizations of alignments can aid biologists when investigating alignments and relationships

between sequences. Prior to this work, there were two alternative ways of viewing alignments: the

pairwise alignment and the path graph.

1.2.3.1. Pairwise Alignments

A pairwise alignment displays in detail one alignment of twosequences. It has been used by biol-

ogists for decades and is the de facto standard for displaying an alignment. This method displays

one sequence in the row above the other such that the amino acid and gap characters of the two

sequences align vertically. Depending on the software and the display capabilities, details such

as how matching amino acids are highlighted vary between systems. Figure 1.1 is an example of

5 SMART and PFAM are alignment databases generated from families of proteins using hidden Markov models.
6 For several reasons, protein structures are not completelystatic. First, any proteins naturally change shape, mean-

ing there is often not one fold shape. Second, the error and ambiguity inherent in structure determination [13] means
structures can vary slightly.
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Figure 1.1. Text-based Pairwise Alignment

An optimal ASCII text pairwise alignment of proteins 1AU8A (NCBI GI: 115725) and 1TGSZ
(NCBI GI: 230350). Created using BLOSUM50 -12/-2.

a pairwise alignment generated by text-based software. In this particular representation, the rows

representing the actual sequences begin with the sequence names; the numbers above and below the

sequences indicate the positions of the amino acids within the sequences; a colon between the two

rows of amino acids indicates an identical match at that position; and a single dot indicates a similar

match. In the boxed region in Figure 1.1, the amino acids in positions 30-34 (CGGFL) in sequence

1AU8A (NCBI GI: 115725) align with the amino acids in positions 32-36 (CGGSL) in sequence

1TGSZ (NCBI GI: 230350). In this subsequence, the amino acids CGG and L align identically,

while the F in 1AU8A is substituted for an S in 1TGSZ.

Pairwise alignments are very effective at communicating the low-level detail of how individual

amino acids align. However, a pairwise alignment represents only one alignment. To display a set

of alternative alignments, a new pairwise alignment would need to be created for each alternative.

While it is trivial to generate a large number of pairwise alignments, it becomes very difficult to
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compare differences between alternatives and understand the relationships captured by the set of

alignments.

1.2.3.2. Path Graphs

Pairwise alignments excel at providing a detailed view of individual alignments, but they do not

provide an overview of the entire set of alignments in one snapshot. An alternative visual represen-

tation to many text-based pairwise alignments is the dot plot described by Zuker [8]. See Figure 1.2

for an example. A dot plot places one sequence along the X axisand the second along the Y. If a

pair of amino acids align, then a point is plotted at the indices of the amino acids. The advantage of

a dot plot display, is that all near-optimal solution can be displayed in a single screen. One problem

with dot plots is that there are frequently too many points todiscern any alignment shape. A variety

of refinements can fix this, for instance only plotting a pointif three or more amino acids in a row

align. This approach helps, but detailed analysis of how individual amino acids align is very difficult

with this representation. Likewise it is impossible to discern how frequently certain sections of the

alignments occur within a set.

Naor and Brutlag [9] proposed an improvement to the dot plot that instead of drawing rough points,

explicitly draws the alignment path graph. Figure 1.3 is an example of a static path graph generated

using Naor and Brutlag’s approach. Path graphs are a representation of an entire set of near-optimal

alignments. Path graphs place one sequence along the horizontal axis and the other along the vertical

axis. A diagonal line on the graph between the sequences, called an edge, indicates that the amino

acids at the respective indices align with one another. A vertical edge indicates that a gap has been

inserted into the horizontal sequence and a horizontal edgeindicates that a gap has been inserted

into the vertical sequence. The resulting set of edges form adirected, acyclic graph where one path

through the graph (from top left to bottom right) representsone alignment. The benefit of the path

graph is that all possible alignments in a set can be displayed at once providing an overview of a set

of alignments. Reliably aligned sections are also easy to see because those sections have relatively

few possible paths through those sections of the graph (e.g.the bottom right section of Figure 1.3),

while variable sections have many possible paths (e.g. the top left section of Figure 1.3).
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Figure 1.2. Dot Plot

Dot plot of proteins 1AU8A (NCBI GI: 115725) and 1UVTH (NCBI GI: 2781297). 1AU8A is
along the top edge and 1UVTH is along the left edge. A point on the plot indicates that one or more
amino acids align within a sliding window around that point.The darker the point is, the higher
the score for that window is. It should be clear from this image, where the amino acids aren’t even
displayed, that anything other than general observations about the quality of the alignment is very
difficult. Created usingdotter with the BLOSUM62 scoring matrix, K=0.141,λ = 0.319, and a
window size of 16 [64].
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Figure 1.3. Path Graph

An example of a path graph representation of a set of alternative alignments. A vertical edge rep-
resents a gap in the top sequence, a horizontal edge represents a gap in the left sequence and a
diagonal edge indicates a match. The section pointed to by the arrow indicates a section of the
alignment thought to be reliable as there is only one path through the section. The upper left hand
section of the alignment shows multiple paths indicating that there are several possible alignments
of the sequences around position 25 in each sequence. While path graphs provide substantially
more information than dot plots, it is still difficult to do amino acid level comparisons because
the sequences are relatively far apart on the screen. The plot is a partial path graph of multiple
near-optimal alignments of 1TGSZ (vertical, NCBI GI: 230350) and 1UVTH (horizontal, NCBI
GI: 2781297) generated with the SUBOPT program [9] using thePAM250 matrix and a gap penalty
of -3 per residue.

However, the path graph suffers from a number of drawbacks. First, all previous path graph software

created a static display and static path graphs of large sequences are somewhat unwieldy. This

is because path graphs for sequences longer than approximately 80 amino acids (effectively all

proteins) are multi-scale (i.e. too large to entirely fit in one view) [65]. Users can choose only

between a broad overview display where no detail is discernible and a detailed view where no

sense of context is available. Even if the path graph being displayed is at a relatively detailed
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resolution (like Figure 1.3), amino acid-by-amino acid comparison is difficult because the sequences

are positioned perpendicular to one another.

A more scientifically problematic issue is that not all visible paths are actually solutions that fall

within the near-optimal neighborhood. While each edge in the path graph is guaranteed to be part

of at least one near-optimal alignment, an arbitrary path through the set of edges that comprise the

graph is not guaranteed to be near-optimal. Thus, it is impossible to know which paths are actually

included in the set of alignments. In addition, there is no way to discern which paths occur more

frequently in variable sections of the alignments.

Figure 1.3 is a detailed view of a path graph and demonstratesmany of the qualities of path graphs.

Rather than the complete alignment, only positions 153-202of an alignment of the proteins 1AU8A

(vertical sequence on left) and 1TGSZ (horizontal sequenceat top) are displayed. Even with a

detailed view, it is very difficult to determine which amino acid in the left sequence aligns with

which position in the top sequence. Again, note that this is not the complete set of alignments. If all

224 amino acids in 1AU8A had been displayed along with all 229amino acids of 1TGSZ, it would

be nearly impossible to see any detail whatsoever.

Thus, traditional pairwise alignments excel at allowing detailed analysis of individual alignments.

However, they fail to provide any sort of overview capacity.Path graphs provide excellent overviews

of sets of alignments, but fail to provide detailed perspective on the alignments, lose information by

combining all alignments into one display, and do not distinguish the paths within the graph that are

valid alignments in the near-optimal neighborhood.
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Comparison of Near-optimal Alignments with Structural

Alignments

2.1. Introduction

Finding protein structures is much more expensive than finding protein sequences so there are fewer

known protein structures than protein sequences. As a consequence, sequence based alignments re-

main an important tool for constructing homology models between sequences. However, sequence

based alignment algorithms have difficulties constructinghigh quality alignments for sequences

with less that ~40% sequence identity. To solve this problem, efforts have been made to assess

whether sets of near-optimal alignments can improve the sequence alignment with respect to a

structural alignment [58][10]. This can be done in two general ways: 1) by searching for an align-

ment that is closer to the structural alignment than the optimal one, and 2) by evaluating each pair

of aligned residues, assigning them a reliability score, and using this reliability score to predict

structural relevance.

The first method was used by Jaroszewski, et al. [66]. They examined alternative alignments

generated in two ways: from a near-optimal alignment generation algorithm and by varying scoring

parameters. They demonstrated that there is frequently an alignment in these sets that is closer to

the structural alignment than alignments with the highest alignment score. They concluded that the

two methods of generating alternative alignments have complementary (as opposed to redundant)
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information, since the union of the two sets yielded many more alignments that matched a structural

alignment than either of the single sets.

The implicit assumption of [66] and other work that comparessequence based alignments with

structural alignments [6][67][58] is that the structural alignment is correct. In fact, there is no way

to ensure an optimal structural alignment, and different algorithms sometimes produce quite differ-

ent alignments. The hypothesis is that the differences between structural alignments are small with

respect to the differences between sequence based and structural alignments, but this has not been

examined quantitatively. This chapter describes researchthat tests this hypothesis. We compare four

alternative structural alignments with sets of alternative sequence based alignments generated by

varying scoring parameters and by sampling the near-optimal alignment space. The goal of this ef-

fort is to characterize how sets of near-optimal alignmentscompare to sets of structural alignments.

This understanding provides the foundation for extractinginformation about structural alignments

from sets of near-optimal alignments.

2.2. Methods

The pairs of proteins used to generate alignments in this research were domains from the same

homologous superfamily in the CATH [68] structural domain database. The goal was to create a

range of proteins from pairs with certain homology to pairs where homology determination with

standard alignment based techniques was much more difficult. We selected pairs with a range of

similarities: highly similar ( SSEARCH [69]0 < E() ≤ 10−13), similar (10−13 < E() ≤ 10−5),

barely statistically significant (10−5 < E() ≤ 10−2), and not statistically significant (E() > 10−2

). The average percent identities within each group, from lowest expectation to highest were 48.2%,

26.5%, 22.5%, and 20.1%, respectively. A structurally diverse set of protein pairs was selected from

CATH, including members from the allα, all β, and mixedα/β structural classes. In all, there are

94 pairs from 39 superfamilies. The complete list of domains, expectation values, and percents

identity can be seen in Table A.1 in Appendix A.
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To compare the near-optimal sequence alignments to the structural alignments, we first had to gen-

erate the sets of near-optimal alignments. To limit the sizes of the sets of near-optimal alignments,

we used the Zuker [8] algorithm because it ensures a diverse sample by forcing all near-optimal

edges to be included in at least one alignment while at the same time preserving information about

which edges within the set of all edges are used most frequently. We used the Waterman-Byers

algorithm [7] in the particular case where all optimal alignments were desired.

To generate the structural alignments we used the Dali, LSQMAN, CE, and Matras algorithms.

We chose these methods because they represent diverse techniques for building structural align-

ments and we had access to implementations of all four algorithms. We used the stand alone

version of the Dali program [21], called DaliLite [70], obtained from the web site [71], with de-

fault parameters. We used the Linux version of the Combinatorial Extension (CE) program [72],

obtainable at [73], also with default parameters. We used the Structal method as implemented in

the LSQMAN program [74] from the Uppsala Software Factory: [75]. Specifically, we used the

Fast Force and Improve commands to get an initial alignment,the DP command to implement the

dynamic-programming method of Levitt and Gerstein [76], then the Global command to calculate

the statistics based on the Gerstein and Levitt structural similarity score [76]. For Matras, we used

the Linux version of the program provided by the authors [77]with default parameters.

We used multiple methods to compare different alignments with one another. There are two gen-

eral ways in which this can be accomplished. The first is to calculate individual metrics for each

alignment. Individual metrics can be calculated using onlythe alignment in question and algo-

rithm parameters (e.g. the Needleman-Wunsch sequence alignment score). Pairwise metrics are

dependent on a separate alignment, generally a "gold standard," to determine a comparison score.

An example of a pairwise metric is the number of amino acids that are aligned identically by two

alignments. Individual metrics will remain constant for a given alignment whereas a pairwise metric

will change relative to the comparison alignment.

We used two individual scoring metrics in this analysis: a sequence-based score and a structure-based

score. The sequence-based method is the Needleman-Wunsch global alignment score, using a se-

lection of gap penalty and scoring matrix combinations. Thestructure-based method is the Structal
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score introduced by Levitt and Gerstein [76]. LSQMAN can accept an input alignment and calculate

the corresponding Structal score for the two structures (using the Xalign option), so we can calculate

the Structal score for alignments produced by other sequence and structure alignment programs.

The pairwise metric used was the shift score described by Cline, et al. [78]. The shift score was

chosen over statistics that count the number of shared edgesbetween alignments. Comparing the

percentage of residues identically aligned between two alignments is appealing in its simplicity.

However, these values penalize an alignment the same whether a pair of residues is very close to

being identically aligned, or if the pair is wildly divergent as long as the same number of amino

acid pairs align. The shift score is a global measure of similarity between two alignments that

quantifies this deviation and accounts for it in the final score. Because pairwise metrics require a

benchmark alignment, we choose one alignment to act as the "gold standard" against which all other

alignments are compared. We calculated shift scores using each of the four structural alignments

and the near-optimal alignment with the highest structuralscore acting as the gold standard.

2.3. Results

Figures 2.1a and 2.1b contain the Needleman-Wunsch scores of different sets of near-optimal align-

ments along with the Needleman-Wunsch scores of the four structural alignments (X-axis) plotted

against the structural similarity scores of those same alignments (Y-axis). Each point represents one

alignment. The black X’s represent the near-optimal alignments and colored shapes represent the

various structural alignment algorithms.

Figure 2.1a is an example where the near-optimal alignment algorithm produces alignments that

are as good as or better, from a structural perspective than the structural alignment algorithms

according to the structal score [76] (see Appendix A for sequence details). This result motivates

the remainder of this research. However, Figure 2.1a is for only one alignment and Figure 2.1b

demonstrates, near-optimal alignments are not always better. As expected, each of these plots shows

that the set of near-optimal alignments contains one or morealignments with the highest possible
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Figure 2.1. Scatter Plots of Near-optimal Alignments with Structural Alignments

Scatter plots of sets of near-optimal alignments and structural alignments for one pair of sequences
and one scoring parameter combination. The X-axis is the adjusted alignment score and the Y-axis
is the adjusted structural similarity score. The colored square icons represent the structural align-
ments and the x icons represent the set of near-optimal alignments. Figure a shows a pair of pro-
teins (1b5600 vs. 1mdc00 - see Appendix A for sequence details) where the set of near-optimal
alignments contains alignments with structural similarity scores greater than any of the structural
alignments (Y-axis), implying that those near-optimal alignments are better structural alignments.
Figure b shows a different pair of proteins (3sxlA2 vs. 1urnA0 - see Appendix A for sequence
details) where no near-optimal alignment improves upon thestructural alignments.
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Needleman-Wunsch score. Figures 2.2a, b, and c illustrate how near-optimal alignment quality

relates to structural alignment quality.

Figures 2.2a and 2.2b summarize the results found in Figures2.1 for all 94 pairs of alignments and

all scoring parameters. Figure 2.2a is for the results of a near-optimal neighborhood of 95% of

optimal and Figure 2.2b is for the results of a near-optimal neighborhood of 75% of optimal. The

X-axis represents expectation and has been grouped into thefour levels of expectation used in this

analysis. Each level cluster along the X-axis has six columns. Each column represents one com-

bination of scoring matrix and gap penalties. The Y-axis of each plot represents the percentage of

families (pairs of aligned proteins at that level of expectation) that meet the criteria specified by the

column shading. The different shadings within the columns represent different thresholds at which

one or more alignment within the set of near-optimal alignments meets a specified criterion. The

lightest shading (minimum), meaning the highest point of each column, represents the percentage

of families where at least one near-optimal alignment has a better structural similarity score than

the structural alignment with the lowest structural similarity score. The next gradation (median)

represents the percentage of families with at least one near-optimal alignment with a structural

similarity score that is better than the average structuralalignment score. The final gradation (best)

represents the percentage of families with at least one near-optimal alignment better than the best

structural alignment score.

The summaries in Figures 2.2a and 2.2b aggregate this information for our set of protein families.

Figure 2.2b shows that for a broad range of proteins, near-optimal alignments have a better than

60% chance of producing alignments of comparable quality tostructural alignments for alignments

for a neighborhood of 75% of optimal and with expectation values less than 0.01. That chance is

approximately 30% if the neighborhood is narrowed to 95% of optimal. The figures demonstrate

that near-optimal solutions are often as good or better thanstructural alignments. This information

provides evidence that near-optimal alignments can be usedto improve alignments for sequences

without solved structures. The differences between neighborhood size apparent in Figures 2.2a and

2.2b can also be used to help estimate the size of the neighborhood necessary for analysis. The

larger the neighborhood is, the more likely it is to find a better near-optimal alignment.
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Figure 2.2. Structal Score Summaries

Summary plots of the scatter plots seen in Figure 2.1, for allprotein families studied. The X-axis
represents the four levels of expectation and is clustered by scoring matrix combination with one
column representing one expectation/scoring parameter combination. The Y-axis of each plot rep-
resents the percentage of families that meet the criteria specified by the column shading. The ex-
pectation ranges of the clusters are SSEARCH [69] (0 < E() ≤ 10−13), (10−13 < E() ≤ 10−5),
(10−5 < E() ≤ 10−2), and (E() > 10−2 ). The corresponding sequence identity thresholds are
48.2%, 26.5%, 22.5%, and 20.1%. In Figures a) and b) the lightest shading represents the percentage
of families where at least one near-optimal alignment has a better structural similarity score than
the worst structural alignment. Subsequent gradations represent the percentage of families with
near-optimal alignments better than the median and best structural alignments. Figure a) plots this
information for sets of near-optimal alignments built witha neighborhood of 95% of optimal. Figure
b) plots this information for sets of near-optimal alignments built with a neighborhood of 75% of
optimal. Figure c) represents different information than Figures a) and b). The Y-axis represents the
percentage of families with at least one structural alignment with a sequence alignment score within
the specified percentage of the optimal alignment score.
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Figures 2.2a, 2.2b, and 2.2c also provide evidence that selection of scoring matrix plays a relatively

small role in the quality of the sequence based alignments created. This is seen in the small variation

between results for the same expectation levels in Figures 2.2a and 2.2b and is supported byχ2tests

of the different levels. For the 75% neighborhood and the lowest expectation level, the respective

χ2statistics for the minimum, median, and best percentages offamilies are 0.0236, 0.0043, and

0.0061, each with five degrees of freedom and each with p-values of 1. The results for other levels

are similar. From this we can conclude that the selection of scoring matrix and scoring parameters

play little or no role in the quality of sequence based alignments generated.

While Figures 2.2a and 2.2b provide a perspective on the setsof near-optimal alignments using a

structural alignment score, Figure 2.2c provides a perspective of the structural alignments from the

perspective of the Needleman-Wunsch score. The axes in Figure 2.2c are the same as for Figures

2.2a and 2.2b. The different shadings represent the percentage of families that have a structural

alignment within a certain threshold of the optimal alignment score. The lightest shading and high-

est point of each column represents the percentage of families with at least one structural alignment

within 75% of optimal. The next gradation represents the percentage of families with at least one

structural alignment within 95% of optimal and the last gradation represents the 100%(optimal)

threshold. Figure 2.2c provides reassurance that structural alignment algorithms produce results

that are within a reasonable neighborhood of the optimal Needleman-Wunsch score.

Figure 2.3 summarizes the results of pairwise comparisons of sets of near-optimal alignments with

structural alignments using the shift score [78]. Each column along the X-axis represents one pair

of sequences that are aligned. The Y-axis represents a scaled shift score (exponentiated with base

100), which allows the display of shift scores between 0.8 and 1 to be less cluttered. The blue X

icon represents the "gold standard" against which all otheralignments for this pair of sequences was

evaluated, in this case the Dali alignment. Dali was chosen arbitrarily (although Dali is perhaps the

most widely used structural alignment algorithm) and the results with different gold standards are

substantially similar. The red points represent the shift scores of the other structural alignments and

the box plot represents the distribution of near-optimal alignments. In Figure 2.4, there is no blue

icon (structural gold standard), rather the near-optimal alignment with the highest structal score

is used as the gold standard. The neighborhood for the near-optimal alignments is 75% and the
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Figure 2.3. Shift Score Summary Box-plots With Dali Gold Standard

Box-plots of the shift scores calculated for each near-optimal alignment and each structural align-
ment relative to the Dali alignment for each pair of proteins. The four different plots represent
the four levels of expectation (the corresponding sequenceidentity thresholds are 48.2%, 26.5%,
22.5%, and 20.1%). The near-optimal neighborhood is 75% andthe alignment scoring parameters
are BLOSUM50 -10/-2. The families are ordered such that those families where the near-optimal
box-plot intersects at least one structural alignment are to the left and highlighted with gray. Those
that do not intersect are to the right. They are subsequentlyordered by the minimum shift score,
either near-optimal or structural.
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Figure 2.4. Shift Score Box-plots With Near-optimal Gold Standard

Box-plots of the shift scores calculated for each near-optimal alignment and each structural align-
ment relative to the near-optimal alignment with the highest structural similarity scoring for each
pair of proteins. The families, near-optimal neighborhood, scoring parameters, expectation ranges,
and ordering are the same as Figure 2.3.
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alignment scoring parameters are BLOSUM50 -10/-2. The families are ordered such that those

families where the near-optimal box-plot intersects at least one structural alignment are to the left

and highlighted with gray. Those that do not intersect are tothe right. They are subsequently ordered

by the minimum shift score, either near-optimal or structural.

Figures 2.2 and 2.4 capture the variation within sets of near-optimal alignments in relation to

the variation within sets of structural alignments. These figures show that while structural align-

ments are generally closer to another structural "gold standard" than near-optimal alignments, and

near-optimal alignments are generally closer to one another, the solution spaces overlap in many

cases. Even in the cases where there is no overlap, the figuresshow that in most cases the range of

near-optimal alignment shift scores is close to the structural alignments. These plots provide clear

evidence that near-optimal alignment space is not vastly different from structural alignment space.

This result motivates our research into how to more effectively support the use of the information

found in sets of near-optimal alignments.

2.4. Conclusions

This research demonstrates that near-optimal alignments compare favorably to structural align-

ments. We first note that sets of near-optimal alignments with reasonably sized neighborhoods

often contain alignments with structural similarity scores that are better than structural alignments.

As expected, this intersection increases as sequence identity increases. However, we show that

it also occurs in pairs with lower percent identity. These results confirmed our expectations that

near-optimal alignments could provide useful structural information.

This research also shows that the alignment solution space defined by sets of near-optimal align-

ments often intersect the solution spaced defined by structural alignments for the same proteins.

This result contradicts the hypothesis that the variation between structural alignments is less than the

variation between structural and sequence based alignments. It also demonstrates the relatively high

variation between structural alignments and shows that theimprovement of structural alignments
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over sequence based alignments is generally small and does not always improve on a sequence

based alignment.



Chapter 3

Predicting Structural Alignment Significance with Sets of

Near-optimal Alignments

3.1. Introduction

This chapter involves the comparison of pairs of aligned amino acids in sets of alternative alignments

with pairs of aligned amino acids in sets of structural alignments. The goal is to use the informa-

tion found in sets of near-optimal alignments to assist in the construction of structural similarity

models. Specifically, we use statistics about aligned pairsof amino acids from sets of near-optimal

alignments to predict whether the same pair of amino acids isalso aligned in one or more of the

structural alignments.

Our work builds upon the work of Mevissen and Vingron [58] in which they introduce an edge

reliability index called robustness. The robustness of an edge is a function of a set of near-optimal

alignments and is a measure of the degree to which a particular edge contributes to the similar-

ity score for a particular alignment. Specifically, robustness is the difference in alignment scores

between the highest scoring alignment that includes the edge in question and the highest scoring

alignment than excludes the edge. The greater the difference is, the more robust the edge is and the

more important the edge is to the overall alignment score. Mevissen and Vingron demonstrated that

the robustness of an edge accurately predicted whether the edge was also aligned in the structural

alignment (see Figure 3.12).
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An alternative measure of edge quality is the frequency thatan edge occurs within a set of near-optimal

alignments [11]. The expectation is that the more frequently an edge occurs within a set of align-

ments, then the more important that edge is to the alignment of the two proteins. The frequency of

an edge is calculated as the number of near-optimal alignments that the edge occurred in divided by

the total number of near-optimal alignments for that pair ofproteins and scoring parameters.

A third technique for assessing the quality of an edge is to calculate the maximum bits-per-position

score for the given edge. The bit score is a value derived fromthe alignment score that takes

the statistical properties (common referred to as Altshul-Gish statistics) of the alignment scoring

parameters into account [54]. The benefit of the bit-score isthat it allows alignments created with

different scoring parameters to be compared. Bits-per-position is simply the bit score divided by

the length of the alignment. To calculate the maximum bits-per-position score we compare the

bits-per-position score for each alignment that includes aparticular edge and assign the maximum

value to that edge. The benefit of maximum bits-per-positionis that the bits-per-position score

is a function of the entire alignment, whereas robustness and frequency are edge specific. This

means that maximum bits-per-position captures the overallquality of the best individual alignment

containing that edge while frequency and robustness reflectthe set of alignments as a whole.

The goal of this chapter is to build a probabilistic model that considers whether robustness, fre-

quency, and maximum bits-per-position can predict whetheran edge is in a structural alignment

and do so more effectively than robustness alone. Because the response variable in this case is

dichotomous (whether or not an edge is aligned structurally), we use logistic regression [79] to

construct a model. The logistic regression model is a generalized linear model in which a linear

combination of predictor variables estimate the response variable through a logit link function:

log(
π(x)

1 − π(x)
) = B0 + B1x1 + . . . + Bnxn (3.1.1)

where

π(x) =
eB0+B1x1+...+Bnxn

1 + eB0+B1x1+...+Bnxn

(3.1.2)
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is the logistic distribution probability density functionwith xi representing the predictor variables

andBi representing the model parameter estimates. The result of alogistic regression model is a

function that calculates the probability of a response given specific inputs. In this case, we develop

a function that estimates the probability that a particularedge is part of a structural alignment.

This research explores the relationship between sets of near-optimal alignments and alternative

structural alignments. We compare alternative structuralalignments with each other and with sets

of near-optimal alignments. We demonstrate that near-optimal alignments provide a foundation

from which to explore structural alignments. Based on this information we construct a probabilistic

model that uses the information contained in sets of near-optimal alignments to predict whether or

not specific amino acid pairs (i.e. edges) are likely to be included in structural alignments.

3.2. Methods

The same protein families used for the structural comparison in Chapter 2 were used for constructing

the logistic regression model. The data were partitioned into test and training data sets. The data

were partitioned along family lines, meaning proteins fromone family were used to either train the

model or test the model, not both. This was done to most realistically portray real-world alignment

situations where our model is unlikely to be used to assist isaligning proteins found in families used

to construct the model. The families were distributed so that roughly the same levels of expectation

were represented between models.

For the logistic regression we built models by varying threefactors: alignment scoring parameter

combinations, the near-optimal neighborhood size, and thesample size. The scoring parameter

combination options were BLOSUM50 -10/-2, BLOSUM50 -12/-2, BLOSUM62 -11/-1, and the

three combined (four levels). The possible neighborhood sizes were: all optimal alignments, those

alignments with scores within 95% of optimal, and those alignments with scores within 75% of

optimal (three levels). The sizes of the samples (i.e. number of edges) for each combination of

neighborhood and scoring parameter combination can be seenin Appendix A in Tables B.1 and

B.2. Given those values, we chose sample sizes of 500, 1000, 2000, 5000, and 10000 edges (five
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levels). For the sets of optimal alignments, instead of 10000 edges, we used all available. Taken

together, the levels created by these variables resulted in60 possible models (four scoring parameter

combinations, three neighborhood sizes, and five sample sizes).

We developed models for the four possible response variables. The response variables reflected the

number of times a particular edge occurred within the set of structural alignments. The first set of

models used a threshold of one out of four structural alignments meaning if an edge appeared in

one or more structural alignments, the response variable was coded as 1 and 0 if the edge occurred

in no alignments. The second set of models was developed using a response variable defined by a

threshold of two out of four structural alignments. The third set of models used a response variable

defined by a threshold of three out of four structural alignments and the fourth set of models only

considered the edge structurally relevant if it was included in all four structural alignments. Com-

bining the four different response thresholds with the 60 possible models resulting from the model

factors, resulted in 240 models.

The predictors that were investigated for these models werethe robustness of the edge, the frequency

of the edge and the maximum bits-per-position of the edge. Each of the three predictor variables

was normalized between 0 and 1.

To choose which of the three predictor variables were appropriate for consideration in our model,

we undertook two analyses. The first was to build single parameter models using each of the pos-

sible predictors. Following the strategy described in [79], any variable with a p-value less than

0.25 should be considered for inclusion in the model. The 0.25 threshold is deliberately large to

allow variables that individually may only be significant when interacting with other variables to

be included. Single variable models were built using the scoring parameter/sample size combina-

tions described above. We built models using a threshold of two (i.e. the edge was in at least two

structural alignments). The second strategy was to use a stepwise model construction technique.

Parsimony was measured with the Akaike Information Criterion1 (AIC) [80]. The same sample

sizes and scoring parameters were used for the stepwise analysis as for the single variable models.

1 AIC is an information theory based, relative goodness-of-fit statistic used to compare alternative models based on
a sample of data. The statistic produced attempts to balancethe complexity of the model (number of parameters) with
the fit to the data in an effort to prevent over-fitting. For ourpurposes, it is simply a statistic used to compare alternative
models.
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Once the predictor variables were selected, we performed a preliminary analysis to determine which

of the model factors should be used for the final model construction. This was accomplished by

building regression models for each model factor combination (60 models) and each response vari-

able and analyzing the predictor coefficient estimates to determine if a relationship existed between

the coefficients of models built using different factors.

Once the variable selection and model factor analysis were complete, we began the final model

construction and analysis. The process for building our model includes the construction of four

alternative models and then comparing the results to selectthe final model. The first model includes

all three predictor variables, which we refer to as main effects. The next model includes interaction

terms. The third model includes the main effects and second order polynomials of the main effects.

The final model includes the main effects and second order polynomials of the main effects along

with all of the interaction terms. The intercept is used in all models during final model construction.

The alternative models are compared in two different ways. First, they are compared by model

deviance (the lower the deviance, the better the model). Model deviance is compared using theχ2

test. The second test is to compare the performance of the models when classifying the test data set

using the area under the ROC curves as the metric. The larger the area under the ROC curve is, then

the better the classification performed by the model.

One underlying assumption of logistic regression is that the predictor variables are mutually inde-

pendent (to avoid multicollinearity). Correlation analysis of the predictor variables was performed

using a sample size of 5000 with edges drawn from the trainingset with a combination of the three

scoring parameter possibilities (BLOSUM50 -10/-2, BLOSUM50 -12/-2, BLOSUM62 -11/-1). The

estimated correlation coefficients and associated statistics can be seen in Table 3.1. These results

show that there is some correlation between the predictor variables. However, the correlations are

small in absolute value, so we do not have a strong reason to suspect that multicollinearity will be

problem. A plot of the sample data can be seen in Figure 3.1.
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Table 3.1. Predictor Correlation Analysis Results

Predictor correlation analysis results. The results are from a sample containing 5000 edges drawn
from the training set with a combination of the three scoringparameter possibilities (BLOSUM50
-10/-2, BLOSUM50 -12/-2, BLOSUM62 -11/-1).

R t d.f. p-value

frequency vs. max. bits-per-position -0.256 -18.7 4998 < 7.58 ∗ 10−78

frequency vs. robustness 0.306 22.7 4998 0
robustness vs. max. bits-per-position-0.115 -8.18 4998 < 3.56 ∗ 10−16

Figure 3.1. Predictor Correlation Plots

Correlation plots of possible logistic regression predictor variables. The plots in the lower left hand
corners are scatter plots of the different predictor variables against one another. The top right hand
corners are the correlation statistics for the respective predictor variables. The results are from a
sample containing 5000 edges drawn from the training set with a combination of the three scoring
parameter possibilities (BLOSUM50 -10/-2, BLOSUM50 -12/-2, BLOSUM62 -11/-1).
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There is no universal goodness-of-fit measure for logistic regression.2 The alternative recommended

in the comprehensive comparison of goodness-of-fit tests for logistic regression by Hosmer, et al. is

the use of a smoothed residual test statistic [82]. The p-value for this statistic is calculated in terms

of the chi-squared distribution.

The logistic regression was performed using the R statistical computing system [83]. Models were

built using default parameters for theglm (generalized linear model) function with the logit link

function and thelrm (logistic regression model) function from theDesignlibrary [84] (see Appen-

dices D and E for details).

3.3. Results

The comparison of near-optimal and structural alignments demonstrates that near-optimal align-

ments can provide information about structural alignmentsbecause there is overlap between their

respective solution spaces. Not yet addressed, however, ishow this information can be used in an

effective manner. The logistic regression model provides one answer to this question.

3.3.1. Preliminary Variable Selection and Model Factor Analysis

The variable selection analysis showed that all possible predictor variables should be included in the

final model. Single variable logistic models were built using each predictor variable, each scoring

combination, and each sample size. The structural threshold was limited to two out of four structural

alignments for an edge to qualify as structural, leaving us with 60 models for each predictor variable.

Of the 60 models, 67% (40/60) of the frequency models, 93% (56/60) of robustness models, and

63% (38/60) of maximum bits-per-position models have p-values less than 0.25. These data provide

no strong evidence that any one variable should be excluded from the analysis.

2 The most common approach to assessing goodness-of-fit is by calculating the Pearson chi-squared statistic or the
equivalent model deviance likelihood ratio [81]. However,these statistics are only valid when the number of covariate
patterns (specific combinations of predictor variable values) in the sample data is substantially less than the number
of samples. This is a common situation with categorical predictor variables, however it is much less common with
continuous predictor variables. For models with continuous predictor variables the frequency of covariate patterns will
generally be very low, which means the assumptions necessary behind the Pearson chi-squared statistic do not hold. As
a consequence, a different test must be used.
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An ancillary benefit of this analysis is the apparent trend showing that models built using only

optimal alignments or with a neighborhood of 75% of optimal fare worse than models built with a

neighborhood of 95%. This is reflected in the twofold and threefold increase in models with high

p-values between 95% and optimal neighborhoods and 95% and 75% neighborhoods. Of the 180

single variable models constructed, a total of 46 had p-values greater than 0.25. Of these 46 models,

16 were from the optimal neighborhood, seven were from the 95% neighborhood, and 23 were from

the 75% neighborhood. The likely reason for this is that if the neighborhood is too small, then not

enough structural edges are included in the set to create an accurate model and if the neighborhood

is too large, then the number of structural edges relative tothe overall number of edges is too small,

which again means there are not enough data with which to build an accurate model. This suggests

that our model building efforts should be focused on the 95% of optimal neighborhood.

The alternative approach to variable selection was the stepwise construction of models where pre-

dictor variables were successively included based on minimizing the model AIC. Of the 60 mod-

els analyzed, each had a different combination of predictorvariables selected for inclusion. Two

models included only frequency, four models included frequency and maximum bits-per-position,

four models included frequency and robustness, and 50 models included frequency, robustness, and

maximum bits-per-position. This indicates that all predictor variables should be included in our

analysis. This conclusion is further supported by close examination of the steps taken in the model

building. Variable omissions occurred because of very small changes in AIC scores. The average

difference between the entering AIC and the smallest AIC forparticular models was 0.25% (with

AIC scores ranging in size from 68 (small sample) to 7587 (large sample)). This tells us that the

difference between possible variable selection strategies is minimal, which implies that all variables

can be included in the model without significant detriment. The stepwise analysis confirms the result

produced by single variable model analysis. We therefore include all possible predictor variables

(maximum bits-per-position, robustness, and frequency) in our final model construction.

Given the result that our modeling efforts should be restricted to a neighborhood of 95% of optimal,

we constructed 20 models (five sample sizes, four scoring parameter combinations) for each of the

four response thresholds using the three predictor variables without interaction. Upon examining

the estimated model parameters, two observations were made: 1) the frequency and maximum



Chapter 3. Predicting Structural Alignment Significance with Sets of Near-optimal Alignments 53

Table 3.2. Preliminary Analysis Robustness/Intercept Estimate Correlation

Response Threshold R t D.F. p-value

1 -0.997 -56.8 18 9.4e-22
2 -0.995 -44 18 8.84e-20
3 -0.993 -36.6 18 2.38e-18
4 -0.996 -47 18 2.78e-20

bits-per-position coefficient estimates were nearly equivalent across models, and 2) for each model

the estimated intercept was the negative of the robustness value. An analysis of the correlation

between the intercept and robustness estimates for each response threshold showed extremely high

correlation (3.2). This led us to conclude that either robustness or the intercept could be omitted

from thepreliminary analysis. While we have a concrete interpretation of robustness, we do not

have an equivalent interpretation of the intercept term as it relates to the set of near-optimal align-

ments. For this reason, we chose to omit the intercept term. Once the 80 models were rebuilt

using the new formula, we saw that for all models, the parameter estimate p-values were less than

2−16 and that now the estimated parameters for robustness, alongwith frequency and maximum

bits-per-position were nearly equivalent across models. Using the Kruskal-Wallis test we tested

whether the parameter estimates were independent of the tworemaining model factors: sample size

and scoring parameter combination. A 5x4 ANOVA test for eachresponse threshold and each model

parameter (Tables 3.3, 3.4, 3.5, and 3.6) shows that in each case the maximum bits-per-position co-

efficient was dependent on the scoring parameter combination while being independent of sample

size. Robustness and frequency are independent of both factors. This result supports the results seen

in Figure 2.2, which told us that scoring parameter selection did not substantially alter the quality

of the near-optimal alignment generated.

3.3.2. Final Model Construction and Analysis

As a result of this preliminary analysis, we concluded that we could choose one sample size and

be confident that the model would not change substantially. Because maximum bits-per-position

was dependent on the scoring parameter combination, we selected the set with the combination of

the 3 individual scoring parameter combinations. For brevity, we present only the model based on
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Table 3.3. Response Threshold 1 Model Parameter ANOVA

D.F. S.S.E. M.S.E. F p-value

Robustness Sa2.0mple
Size

4 0.06091 0.01523 0.1231 0.9714

Robustness Scoring Pa-
rameters

3 0.33994 0.11331 0.9161 0.4623

Residuals 12 1.48424 0.12369

Frequency Sample Size 4 0.14596 0.03649 0.4473 0.7725
Frequency Scoring Pa-
rameters

3 0.30795 0.10265 1.2583 0.3324

Residuals 12 0.97891 0.08158

Maximum Bits Sample
Size

4 0.1620 0.0405 0.1929 0.9374358

Maximum Bits Scoring
Parameters

3 9.7937 3.2646 15.5503 0.0001953

Residuals 12 2.5192 0.2099

Table 3.4. Response Threshold 2 Model Parameter ANOVA

D.F. S.S.E. M.S.E. F p-value

Robustness Sample Size 4 0.07963 0.01991 0.1162 0.9742
Robustness Scoring Pa-
rameters

3 0.66266 0.22089 1.2896 0.3227

Residuals 12 2.05534 0.17128

Frequency Sample Size 4 0.14190 0.03547 0.2787 0.8861
Frequency Scoring Pa-
rameters

3 0.59148 0.19716 1.5490 0.2528

Residuals 12 1.52743 0.12729

Maximum Bits Sample
Size

4 0.5443 0.1361 0.4915 0.7423000

Maximum Bits Scoring
Parameters

3 10.1426 3.3809 12.2110 0.0005876

Residuals 12 3.3225 0.2769
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Table 3.5. Response Threshold 3 Model Parameter ANOVA

D.F. S.S.E. M.S.E. F p-value

Robustness Sample Size 4 0.3194 0.0799 0.2907 0.8784
Robustness Scoring Pa-
rameters

3 0.9764 0.3255 1.1850 0.3566

Residuals 12 3.2959 0.2747

Frequency Sample Size 4 0.28262 0.07065 0.3467 0.8413
Frequency Scoring Pa-
rameters

3 0.95350 0.31783 1.5597 0.2503

Residuals 12 2.44541 0.20378

Maximum Bits Sample
Size

4 0.3878 0.0969 0.2444 0.907573

Maximum Bits Scoring
Parameters

3 12.5553 4.1851 10.5513 0.001106

Residuals 12 4.7597 0.3966

Table 3.6. Response Threshold 1 Model Parameter ANOVA

D.F. S.S.E. M.S.E. F p-value

Robustness Sample Size 4 1.06422 0.26605 1.6891 0.2168
Robustness Scoring Pa-
rameters

3 0.61945 0.20648 1.3109 0.3162

Residuals 12 1.89015 0.15751

Frequency Sample Size 4 0.66212 0.16553 0.9745 0.4570
Frequency Scoring Pa-
rameters

3 0.95178 0.31726 1.8677 0.1889

Residuals 12 2.03842 0.16987

Maximum Bits Sample
Size

4 1.2602 0.3150 1.7121 0.2118

Maximum Bits Scoring
Parameters

3 19.7619 6.5873 35.7980 2.89e-06

Residuals 12 2.2082 0.1840
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Table 3.7. Logistic Regression Model Using Main EffectsWithoutInteraction

Coefficient S.E. Wald Z P-value

Intercept -9.806 1.9191 -5.11 0.0000
freq 4.720 0.1334 35.38 0.0000
robust 5.905 2.0162 2.93 0.0034
mbits 2.068 0.1849 11.19 0.0000

Figure 3.2. Model Main EffectsWithoutInteraction ROC Curve

the 50% response threshold (two of four structural alignments) here. The final models for the other

thresholds can be found in Appendix E. The final models all include the intercept term.

The first model we built used each of the three predictors (main effects) without interaction. Table

3.7 contains the result. The model goodness of fit test has a p-value of3.39x10−10. The ROC

curve (Figure 3.2) shows that model exhibits excellent classification according to [79]. Analysis

of the residuals shows (Figure 3.3) a small amount of curvature in the Residuals vs Fitted and

Scale-Location plots, which suggests that quadratic termsmight be applicable. The Normal Q-Q

plot in Figure 3.3 indicates that the residuals are not normally distributed, however this is not gener-

ally a large concern [79]. The Cook’s Distance plot indicates 3 outliers, but from a sample of 5000,

this is not a large concern.

The second model includes both main effects and all interaction terms. The model goodness of fit

tests returns a p-value of 0.395, much higher than the first model. The results of the model can be

seen in Table 3.8. ANOVA analysis of model deviance shows that the interaction terms do indeed
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Figure 3.3. Model Main EffectsWithoutInteraction Residual Analysis Plots

The Residuals vs Fitted and Scale Location plots are used to identify non-linearity in the residuals.
In and ideal linear model, one would expect the residuals to form straight lines in both plots. The
Normal Q-Q plot tests for normality of residuals and the Cook’s Distance plot tests for outliers in
the sample set.
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Table 3.8. Logistic Regression Model Using Main EffectsWith Interaction

Coefficient S.E. Wald Z P-value

Intercept 41.48 6.563 6.32 0.0000
freq -49.35 7.788 -6.34 0.0000
robust -46.07 6.857 -6.72 0.0000
mbits -111.69 27.111 -4.12 0.0000
freq*robust 54.39 8.109 6.71 0.0000
freq*mbits 76.91 34.416 2.23 0.0254
robust*mbits 113.77 28.346 4.01 0.0001
freq*robust*mbits -71.99 35.850 -2.01 0.0446

Table 3.9. Main EffectsWithoutInteraction vs. Main EffectsWith Interaction ANOVA

The low p-value indicates that the models are significantly different with the Main Effect with
Interaction model being superior because of the lower modeldeviance.

Model Residual D.F. Deviance D.F. D.F. Deviance P-value (χ2)

Main EffectsWithoutIn-
teraction

4996 3440.4

Main EffectsWith Inter-
action

4992 3118.1 4 322.3 1.714e-68

improve the model (by decreasing deviance) by a significant amount (Table 3.9). The area under the

ROC curve (Figure 3.4) also shows the improvement. However,inclusion of the interaction terms

increases the apparent curvature in the residual plots (Figure 3.5). An additional worry is that the

p-value of the model goodness of fit test is not significant.

The curvature apparent in the Residuals vs Fitted and Scale-Location plots (Figures 3.3 and 3.5)

suggests possible polynomial behavior. Therefore, we firstbuilt a model that included second order

polynomial terms, but excluded interaction. The complete model results can be seen in Table 3.10.

The model goodness of fit test resulted in a p-value of 0. The ANOVA results comparing the

Polynomial main effects with no interaction with the main effects with interaction model can be

seen in Table 3.11. This analysis shows that polynomial maineffects do not improve the model over

the main effects with interaction. The polynomial predictor terms do not appear to improve and

appear to worsen the apparent curvature in the Residuals vs Fitted or Scale-Location plots in Figure

3.6. The ROC curve in Figure 3.7 shows no improvement over themain effects with interaction

model.

The final model we constructed included all polynomial main effects with interaction terms. The
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Figure 3.4. Model Main EffectsWith Interaction ROC Curve

Table 3.10. Logistic Regression Model Using Polynomial Main EffectsWithoutInteraction

F stands for frequency, R stands for robustness, and M standsfor maximum bits-per-position. 1
stands for linear terms and 2 stands for quadratic terms.

Coef S.E. Wald Z P
Intercept -1.503 0.05943 -25.30 0.0000
F1 153.176 4.59308 33.35 0.0000
F2 -9.012 2.89360 -3.11 0.0018
R1 14.224 3.07510 4.63 0.0000
R2 13.525 2.78759 4.85 0.0000
M1 45.554 3.92488 11.61 0.0000
M2 -22.094 3.48997 -6.33 0.0000

Table 3.11. Main EffectsWith Interaction vs. Polynomial Main effectsWithoutInteraction ANOVA

Model Residual D.F. Deviance D.F. D.F. Deviance P-value (χ2)

Main EffectsWith Inter-
action

4992 3118.1

Polynomial Main Ef-
fectsWithoutInteraction

4993 3371.9 -1 -253.5 3.943e-57



Chapter 3. Predicting Structural Alignment Significance with Sets of Near-optimal Alignments 60

Figure 3.5. Model Main EffectsWith Interaction Residual Analysis Plots

The Residuals vs Fitted and Scale Location plots are used to identify non-linearity in the residuals.
In and ideal linear model, one would expect the residuals to form straight lines in both plots. The
Normal Q-Q plot tests for normality of residuals and the Cook’s Distance plot tests for outliers in
the sample set.
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Figure 3.6. Polynomial Main EffectsWithoutInteraction Residual Analysis Plots

The Residuals vs Fitted and Scale Location plots are used to identify non-linearity in the residuals.
In and ideal linear model, one would expect the residuals to form straight lines in both plots. The
Normal Q-Q plot tests for normality of residuals and the Cook’s Distance plot tests for outliers in
the sample set.
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Figure 3.7. Polynomial Main EffectsWithoutInteraction ROC Curve

results can be seen in Table 3.12. This model has model goodness of fit score of9.88719 ∗ 10−7.

The ANOVA results comparing this model with the main effectswith interaction model (our best

model so far) are seen in Table 3.13. The analysis tells us that the polynomial main effects with

interaction has produced the best model yet. However, the Residuals vs. Fitted and Scale-Location

plots (Figure 3.8) show the worst curvature yet, while the Q-Q Normal plot indicates normally

distributed residuals. The ROC curve (Figure 3.9) shows only a 1/1000th difference in the area

under the curve between the main effects with interaction model (Figure 3.4).

The final model, which includes quadratic terms and all interactions and shows the best model

deviance. By this measure, this is the bestmodel. Additional evidence of the quality of the model is

the increased apparent normality of the residuals. The difficulty is that the Residual vs. Fitted and

Scale-Location plots show unusual curvature. Interestingly, the Residual vs. Fitted plot shows less

actual curvature, than sharp bends. At the extreme ends of the X axis the lines appear straight, flat,

and show that the model is essentially perfect (residual = 0,Figure 3.8). Towards the middle of the

plot, the model shows residual error, but again the lines appear relatively straight. The implication

is that the residuals are behaving according to two different linear functions. It is unclear why

this occurs. Another worry is that the ROC curve shows no improvement over the model with

interactions, but without quadratic terms. Figure 3.10 shows the ROC curves from each alternative

model overlaid on one another. The final worry is that while the goodness of fit shows a significant



Chapter 3. Predicting Structural Alignment Significance with Sets of Near-optimal Alignments 63

Table 3.12. Logistic Regression Model Using Polynomial Main EffectsWith Interaction

F stands for frequency, R stands for robustness, and M standsfor maximum bits-per-position. 1
stands for linear terms and 2 stands for quadratic terms.

Coef S.E. Wald Z P
Intercept -1.198e+00 1.214e-01 -9.86 0.0000
F1 1.468e+02 7.944e+00 18.48 0.0000
F2 1.382e+01 5.598e+00 2.47 0.0136
R1 4.622e+01 1.479e+01 3.12 0.0018
R2 3.117e+01 1.728e+01 1.80 0.0713
M1 2.937e+01 1.244e+01 2.36 0.0182
M2 -3.813e+00 1.046e+01 -0.36 0.7154
F1 * R1 5.705e+02 9.044e+02 0.63 0.5282
F2 * R1 1.951e+03 5.382e+02 3.62 0.0003
F1 * R2 -3.682e+02 1.108e+03 -0.33 0.7395
F2 * R2 1.417e+03 6.378e+02 2.22 0.0263
F1 * M1 2.908e+03 8.002e+02 3.63 0.0003
F2 * M1 7.887e+02 5.220e+02 1.51 0.1308
F1 * M2 -1.919e+03 6.566e+02 -2.92 0.0035
F2 * M2 4.938e+02 4.362e+02 1.13 0.2576
R1 * M1 7.819e+03 1.407e+03 5.56 0.0000
R2 * M1 4.536e+03 1.699e+03 2.67 0.0076
R1 * M2 3.675e+03 1.068e+03 3.44 0.0006
R2 * M2 2.267e+03 1.445e+03 1.57 0.1167
F1 * R1 * M1 -2.378e+05 8.572e+04 -2.77 0.0055
F2 * R1 * M1 2.085e+05 5.229e+04 3.99 0.0001
F1 * R2 * M1 -2.057e+05 1.082e+05 -1.90 0.0573
F2 * R2 * M1 1.260e+05 6.127e+04 2.06 0.0397
F1 * R1 * M2 -1.279e+05 6.493e+04 -1.97 0.0488
F2 * R1 * M2 1.356e+05 4.149e+04 3.27 0.0011
F1 * R2 * M2 -1.554e+05 9.197e+04 -1.69 0.0911
F2 * R2 * M2 9.515e+04 5.030e+04 1.89 0.0585

Table 3.13. Main EffectsWith Interaction vs. Polynomial Main EffectsWith Interaction ANOVA

Model Residual D.F. Deviance D.F. D.F. Deviance P-value (χ2)

Main EffectsWith Inter-
action

4992 3118.1

Polynomial Main
EffectsWith Interaction

4973 3024.84 20 93.29 8.635e-12
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Figure 3.8. Polynomial Main EffectsWith Interaction Residual Analysis Plots

The Residuals vs Fitted and Scale Location plots are used to identify non-linearity in the residuals.
In and ideal linear model, one would expect the residuals to form straight lines in both plots. The
Normal Q-Q plot tests for normality of residuals and the Cook’s Distance plot tests for outliers in
the sample set.
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Figure 3.9. Polynomial Main EffectsWith Interaction ROC Curve

p-value, it is possible that the p-value is a result of the large sample rather than the quality of the

model. Given the large model sample size, it is also reasonable to question the model deviance

statistics.

The statistics tell us that the quadratic interaction modelis the best, and perhaps as amodel, it

is. However, we are less interested in the model than in what the model accomplishes for us,

meaning how well the model classifies edges. The ROC curves show that the ability of the models

to classify data is essentially the same. Our sense of parsimony therefore dictates that we select

the simplest model, the main effects without interaction. Using the standard described in [79],

this model demonstrates excellent discrimination. The lowp-value for the goodness of fit test, the

significance of all variables in the model (Table 3.7), and the reasonable error bars apparent in the

partial residual plots (Figure 3.11) provide further evidence that the selected model is appropriate

and of high quality.

Finally, and most importantly, the model improves upon the use of robustness alone to predict

structural significance as demonstrated in Figure 3.12. Figure 3.12 shows a Receiver Operating

Characteristic (ROC) curve that summarizes the ability of robustness to directly estimate structural

significance combined with the ROC curve for the main effectswithout interaction model. Predic-

tion for robustness is accomplished by selecting a threshold value and assigning those edges with
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Figure 3.10. ROC Curves of Each Alternative Model

Black represents the main effects model without interaction, blue represents the main effects model
with interaction, red represents polynomial main effects without interaction, and green represents
polynomial main effects without interaction.



Chapter 3. Predicting Structural Alignment Significance with Sets of Near-optimal Alignments 67

Figure 3.11. Partial Residual Plot

Partial residual plots for the three predictor variables inthe main effects without interaction model
(Table 3.7).
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Figure 3.12. Main EffectsWithoutInteraction vs. Robustness ROC Curves

Receiver Operating Characteristic (ROC) curve of robustness thresholds (red) and the logistic re-
gression model using main effects without interaction (black). The larger the area is (closer to 1),
the better the prediction is. The logistic regression modelis described in Table 3.7. This curve
represents an approximate 16% improvement over robustnessalone. In both cases, the results are
from a sample containing 5000 edges drawn from the training set with a combination of the three
scoring parameter possibilities (BLOSUM50 -10/-2, BLOSUM50 -12/-2, BLOSUM62 -11/-1).



Chapter 3. Predicting Structural Alignment Significance with Sets of Near-optimal Alignments 69

values above the threshold structural significance. The figure shows that robustness can accurately

predict structural significance greater than 76% of the timewhile the main effects without interaction

model predicts the structural significance of the edge greater than 89% of the time.

The information about structurally significant edges can beused to enhance construction of homol-

ogy models for sequences with relatively low sequence identity, something that is currently very

difficult.

3.4. Conclusions

This chapter details the construction of a probabilistic model that predicts which pairs of aligned

amino acids in a set of near-optimal alignments are likely tobe part of a structural alignment. Our

model uses the frequency that edges occur in a set, the robustness of the edge, and the maximum

bits-per-position for the edge to estimate this probability. The resulting model is very accurate and

improves upon the use of robustness alone to directly estimate structural significance of edges by

approximately 16% (89-76/76). The improved prediction will allow researchers to create better

homology models by providing confidence that particular edges should or should not align.

The model has been shown to be robust to different variables affecting the model. We have shown

that among the combinations examined, the selection of scoring matrix and alignment scoring pa-

rameters plays very little role in the quality of the information derived from the alignments. This

is further confirmed by the results in Chapter 2 that show little variation in results between scoring

parameter combination. The model has been shown to be independent of the sample size used to

create the model and the threshold used to generate the response variable as well. Therefore, in

addition to the demonstrated accuracy of the model, we can also have confidence that the model is

robust to different modeling factors.

The results in Chapter 2 suggest that larger near-optimal neighborhoods are better because they are

more likely to contain alignments that are as good or better than structural alignments. Clearly,

larger solution spaces will have a better chance of finding a better alignment, but the logistic re-

gression model building process demonstrates that this is not necessarily desirable. The modeling
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results show that if the near-optimal neighborhood is too large, then the frequency of structural

edges within the set of edges will be too low. Based on these results we conclude that a neigh-

borhood of approximately 95% of optimal is sufficient for uncovering useful information about the

proteins. From a human perspective, this is a useful result because smaller neighborhoods imply

smaller numbers of alignments which are much more tractablefrom a cognitive perspective [34].

This is also useful from a computational perspective because large neighborhoods can result in

hundreds of thousands of alignments (particularly for longsequences with low percent identity)

whose generation can consume valuable time and computational resources.

The model developed has been integrated into our system (described in Chapter 4) that allows users

to build and visualize sets of near-optimal alignments. Theability to explore alternative alignments

afforded by the display combined with the predictive power of the logistic regression model provides

a valuable tool for researchers to build high quality alignments of proteins with low percent identity.



Chapter 4

Generating and Visualizing Near-optimal Alignments

4.1. Introduction

Chapter 2 demonstrated that near-optimal alignments favorably compare to structural alignments.

Chapter 3 showed how the information contained in sets of near-optimal alignments can be used to

effectively predict structural alignment significance. This chapter integrates that research and newly

developed techniques for visualizing and displaying near-optimal alignment information such that

it can be used in biological applications.

4.1.1. System Goals

The primary goal of the system is to aid understanding of the relationship between two proteins

by visualizing large sets of alternative alignments. Our system enhances the display paradigms of

both the pairwise alignment and path graph in order to exploit the strengths of each and improve

upon their weaknesses. To accomplish this goal, the system allows biologists to generate, display,

and analyze large sets of alternative alignments. This strategy is predicated on the hypothesis that

consistency and variation in sets of alignments can help predict reliably aligned sections of pro-

teins. This hypothesis was confirmed in Chapter 3. To this end, the system communicates this

information about a set of alignments while providing meansfor detailed, amino acid-by-amino

acid comparison. Because of the importance of expert knowledge in the assessment of alignment

quality, the system supports mechanisms that allow users toapply their expertise to the alignments
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under consideration. These mechanisms include adding display features to identify any relevant

annotations such as structural information, the ability tofilter out alignments with known problems,

and the ability to directly manipulate the alignments basedon hypotheses under consideration.

A secondary goal for the system is to facilitate understanding of the alignment generation algo-

rithms. To accomplish this, researchers have the ability toeasily control and modify alignments

and to understand how their alignments are scored by the alignment generation algorithms. In this

way researchers can develop alignment of interest and see how their alignment corresponds with

near-optimal neighborhood. In addition, researchers havethe ability to easily substitute their own

algorithms for those provided with the system to facilitateexperimentation and algorithm develop-

ment.

4.1.2. System Requirements

The system requirements are minimal. The only significant requirement is for the system to be

web-based so that diverse users can use the system without the burden of installing specific software.

An implication of the web-based system requirement is that the system runs on different operating

systems to support users with different computer requirements.

4.1.3. System Design

The design of the system has three primary parts. First is algorithm input, responsible for collecting

the necessary sequences, annotations, and algorithm parameters necessary to generate alignments.

Second is the generation of the alignments themselves and third is the display and control of the

alignments. The display and manipulation of sets of alignments is the primary contribution of this

chapter. This part of the system consists of two alignment visualization techniques, an animated

pairwise alignment and an enhanced path graph, along with features that allow users to exploit

their expertise and customize the display to fit their specific needs. Support for expertise includes

mechanisms to filter alignments, highlight annotations anddifferent aspects of alignment sets, and

the ability to edit alignments from within the software.
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4.2. Algorithm Input

The sequences, alignment parameters, and annotations on the sequences are entered using a web

form [85]. Sequences can be entered by cutting and pasting, or by specifying a NCBI1 recognized

accession or GI (GenInfo Identifier) number. The researcherthen specifies the scoring matrix and

gap penalty parameters. Multiple combinations of scoring matrix and gap penalties can be specified

to generate a comprehensive set of alignments. The user alsospecifies the near-optimal neighbor-

hood that the alignment generation algorithm should consider. The web form currently allows only

global alignments to be created. Local alignments can be emulated by specifying subsequences to

be aligned. The reason for this is that this research has onlyfocused on global alignments, so we

can not be sure that the conclusions made in Chapters 2 and 3 hold for local alignments.2

Sequence annotations are an important part of the display because they allow users to incorporate

external knowledge into the display. Annotations are integrated into the display with highlighting

mechanisms discussed in section 4.5.1 of this chapter. Annotations are imported into the system

in a separate file which is encoded in General Feature Format (GFF2 [86]). Annotations may be

imported directly from files already in GFF2 format from either the web form or when run as an

application. When the display is run from the web, the systemalso fetches any available annotations

from the NCBI databases.

4.3. Alignment Generation

Methods exist to generate all near-optimal alignments within a certain threshold of the optimal

alignment [7]. However, the fundamental difficulty with generating all near-optimal alignments is

the large number of alignments created. Even with relatively short sequences (~200 amino acids

1 National Center for Biotechnology Information, part of theUnited States National Library of Medicine
(http://www.ncbi.nlm.nih.gov). The various NCBI databases are primary repositories for much of the world’s genomic
and proteomic knowledge. The databases can all be queried via the internet providing an invaluable resource for re-
searchers.

2 Both the alignment generation and the display software actually do support local alignments, the features are
merely hidden from the users. These features can be accessedby running the alignment generation and display applica-
tions directly rather than over the web.
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in length) and within a modest neighborhood of the optimal score (1-2%), there can be millions of

near-optimal alignments. Therefore, various algorithms have been developed to sample (i.e. reduce)

the near-optimal alignment space [8][56]. The primary goalfor these algorithms is to generate a

diverse sample, meaning that the sample is drawn from all parts of the near-optimal solution space.

In practice, this means that the alignments in the sample exhibit as much variation as the set of all

near- optimal alignments. Even using sampling techniques,it is possible to end up with several

thousand near-optimal alignments for a pair of sequences.

4.3.1. Zuker Algorithm

Alternative alignments for the display are generated usinga C++ program that implements an algo-

rithm described by Zuker [8]. The Zuker algorithm has three basic steps. First, a standard a dynamic

programming technique aligns the two sequences, generating a forward alignment score matrix. We

chose an implementation close to that described by Gotoh [22]. Unlike the most space efficient

versions of this algorithm, the entire score matrix is maintained in memory. Once the forward score

matrix is generated, the process is repeated on the reversedsequences, creating a reverse score

matrix. Next, the forward and reverse score matrices are combined into what we call the Zuker

matrix. The value for node i,j in the Zuker matrix is calculated by the score in the forward matrix

at point i-1, j-1, plus the score in the reverse matrix at m-i+1, n-j+1 (where m and n are lengths of

the respective sequences), plus the value of the scoring matrix for the residues at locations i and j in

the respective sequences. The value at node i,j of the Zuker matrix is the optimal score of a global

alignment that is constrained to align residue i in sequenceone with residue j in sequence two. For

a more detailed discussion of this matrix and the algorithm in general, see the original paper [8] and

the RNA folding paper where the technique was originally developed [55].

During the creation of these two score matrices, a second pair of matrices is created that keeps

track of the path used to generate the scores at each node in the respective score matrix. These

path information matrices are used to reconstruct the actual alignments when generating a set of

alignments. For a given point, i,j, the algorithm constructs the alignment by working forwards and

backwards from that point through the information matrices. This process is repeated for every point
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i,j where the value of that point in the Zuker matrix is greater than the near-optimal neighborhood

threshold value specified in the input. The result is a sampleof near-optimal alignments of the input

sequences. As noted by Zuker, this algorithm only creates a sample of near-optimal alignments; at

any given node there is often more than one direction that thealignment can follow that produces

an alignment with the optimal or near-optimal score. A function randomly chooses one of the

possible directions. The randomization ensures that more near-optimal gap edges will be included

in the final set of alignments and reduces the occurrence of duplicate alignments. A property of our

implementation of the Zuker algorithm is that the order thatsequences are entered into the algorithm

slightly alters the sample of alignments generated. This isa result of the algorithm to trace back

through the score matrix to construct the alignment once thescores have been calculated.

The Zuker algorithm calculates an alignment for each match edge (where one residue aligns with

another residue, as opposed to a residue aligning with a gap)that falls within the near-optimal

neighborhood. For this reason, we can be certain that the sample created reflects the diversity in the

entire set of near-optimal alignments for the specified neighborhood. This has been confirmed by

overlaying path graphs generated with a Zuker sample and from all near-optimal alignments. The

overlay showed that the only edges in the set of all near-optimal alignments that were not present in

the Zuker sample were gap edges, something of relatively little biological interest.

4.3.2. Waterman-Byers Algorithm

While a sample of the near-optimal solution space is generally all that is necessary for most analyses,

there are instances when it is desirable to have all near-optimal alignments. To this end, we have

implemented the Waterman-Byers algorithm [7] for generating all near-optimal alignments. The

algorithm uses the same forward dynamic programming technique as the Zuker algorithm to calcu-

late a forward alignment score matrix. Unlike the Zuker algorithm, it is unnecessary to maintain a

direction matrix. Once the forward alignment score matrix has been calculated and stored, the algo-

rithm begins a simple stack based depth-first traversal of the path graph beginning at the m,n node

of the alignment score matrix (m and n are the respective sequence lengths). As the tree is built, the

reverse alignment score is calculated up to the given node. Next, the algorithm determines which of
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the possible branches from that node will maintain a score within the near-optimal threshold. This

is calculated by summing the score of the branch edge, the score of the tree to that point, and the

value of the alignment score matrix at the end of the branch. As the tree is built, an alignment is also

created, which explains why the direction matrix is unnecessary. Once the traversal reaches the 0,0

node, the alignment is output and the algorithm retreats to the last branch and repeats the process.

Even with today’s fast computers and large amounts of disk space, it is relatively easy to overburden

a computer when using the Waterman-Byers algorithm. The longer the sequences and the lower

the percent identity they share, the larger the set will be. For example, using scoring parameters

BLOSUM62, gap open of -6, gap extend of -1, and a neighborhoodof 0% (only optimal alignments)

the sequences 1cv2A0 and 1cqzB0 yield 402,978 alignments.

4.4. Display Sub-system

Our display consists of two primary modes for viewing alignments: 1) an animated pairwise align-

ment that displays a large number of alignments in sequence and 2) a path graph display built

using zooming display techniques. The two display modes aresupplemented by mechanisms for

selectively highlighting different aspects of the displays, the ability to filter alignments from the

defined set, and the ability to manually edit and create alignments to be considered along with the

generated set. These features facilitate the application of domain expertise to the display.

4.4.1. Animated Pairwise Alignments

To help in understanding the relationships and how alignments vary within a set, we describe a

method for visualizing large sets of pairwise alignments using animation, specifically the rapid

serial visualization technique [87]. We also provide context regarding how one alignment compares

to all others in the set and provide some overview information concerning relationships in the align-

ments. By animating the alignments, many alignments are presented while maintaining the pairwise
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alignment paradigm that is so effective for detailed comparisons. The animation is generated by dis-

playing each alignment for a short period of time, much like the frames in a movie. The resulting

effect of the animation is analogous to astronomical blink comparators (blink microscopes) where

alternating images of the same view are displayed and any objects in one image but not the other

appear to flicker and become salient.

By itself however, the visual effect of displaying one alignment after the other does not help illu-

minate relationships because different numbers of gaps before reliably aligned sections cause these

sections to shift in the display window. We therefore developed the steady display algorithm, which

steadies the text on the screen when sections of several alignments are invariant. The visual effect

can be described as "islands of stability" (Figure 4.1). Reliably aligned sections of alignments

become salient because they appear steady on the screen. Conversely, variable sections become

apparent because they appear to move on the screen. We further emphasize the steady display by

highlighting the background of the amino acids where a darker background color indicates a more

frequent (and thus reliable) alignment. The combination ofthe animation and highlighting provides

overview information regarding reliably aligned sectionswithin a set of alignments.

Coupled with the pairwise alignment display is a screen containing alignment information including

the alignment score and the parameters used to create and score the alignment. This can be valuable

for distinguishing alignments in the same set that are created using different parameters.

Traditionally, near-optimal alignments are presented together in a single display with a path graph

or dot plot [8][9]. This representation effectively highlights sections of high variability between

alignments, but these displays lose information by combining all alignments into one display. Figure

1.3 provides an example of a partial path graph of a subset of near-optimal alignments of two

serine proteases 1TGSZ (NCBI GI: 230350) and 1UVTH (NCBI GI:2781297). The alignment

shows variability at the beginning and end of the alignment by drawing the multiple paths that the

alignment could follow. In contrast, in the middle of the alignment there is only one path and hence

only one way for the amino acids to align (this is expected as the ’H’ in the active site is aligned).

The primary difficulty with a path graph display is determining which of the alignment paths are

more likely. Additionally, path graphs are difficult to use for residue level analysis, because the
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Figure 4.1. Conserved Highlight

A screen shot of a near-optimal alignment of 1TGSZ (NCBI GI: 230350) and 1UVTH (NCBI GI:
2781297). The alignment was created using BLOSUM50 -10/-2 and a near-optimal neighborhood
of 95%. The steady display, conserved highlight, numbering, names, and customized active site
highlights are selected. The three active site residues of the serine protease catalytic triad (46H,
90D, 183S in 1TGSZ; 43H, 99D, 205S in 1UVTH) are highlighted with yellow rectangles between
the residues. The orange highlighting indicates the most conserved regions of the alignment. The
darker the orange, the more conserved the region. The alignment is substantially conserved around
all three active sites.

actual sequences are placed perpendicular and hence distant from one another. Readers of path

graphs may have difficulty mentally mapping horizontal, vertical and diagonal edges into insertions

and deletions (e.g., with which amino acids in 1UVTH does the25th amino acid in 1TGSZ align?).

Options for annotating a path graph with additional information are also limited.

Traditional text based alignments, with one sequence placed above the other (as seen in BLAST

and FASTA output), are ideal for displaying the precise residue to residue mapping between the two

sequences. But it is difficult to show alternative text basedalignments and highlight the differences

between the alignments. One strategy puts alternate alignments above and below the optimal align-

ment in some regions. This becomes more difficult when the number of gaps differs among the

alignments, as this changes the overall alignment length. As the number of alignments increases,

the difficulty increases.

Although it is relatively straight-forward to display a large set of alignments as successive frames in

a movie, the naive approach does not make it easy to distinguish constant from variable alignment

regions. We seek to highlight the residues that consistently align with one another and distinguish

them from those positions that are more variable. To do this,the sections of an alignment that
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are most consistent should remain steady on the screen whilemore variable regions should move

around. This is not possible with the conventional constantspaced character placement used by

BLAST and FASTA.

To address this difficulty, we developed an algorithm for placing pairs of residues (the two residues

that align an edge in a path graph) according to the frequencywith which the pairs occur in the set

of all alignments and the relative position of that pair within an alignment. The result is a display

where residues that consistently align with one another remain stationary in the display, while those

that align with many different residues appear to move about.

The first step is to determine the relative position of each aligned pair of residues in relation to the

overall length of the alignment. To calculate this we dividethe index (position in the alignment) of

the pair by the length of the alignment. Next this relative position is averaged with all of the other

relative positions for the given pair, to produce an averagerelative position for the pair. Pairs can

occur in many different alignments within a set of solutions. The frequency that each pair occurs

with respect to the number of alternative alignments is alsocalculated.

When we are rendering the text on the screen, we use the average relative position of given pairs

to determine the placement of the particular pair. The average relative position is multiplied by the

width of the display to get the exact position on the screen where the pair will be rendered. The

width of the display is determined by the longest alignment.

Each pair has only one average relative position and is therefore rendered in the same location on the

screen every time. The visual effect of stability is an emergent property of the data. Pairs that appear

in a large number of alignments appear stationary on the screen, since they are always rendered in

the same location. Residues that are part of pairs that appear infrequently move around, since the

different pairs have different average relative positions.

4.4.2. Zoomable Path Graph

Path graph representations of sets of alignments are generally lacking in the detail necessary for

amino acid-by-amino acid comparisons of sequences. Because the path graph provides an excellent
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Figure 4.2. Pairwise Alignment and Path Graphs

(a) An image of the pairwise alignment of Dermcidin (NCBI GI:16751921) and Lacritin (NCBI
GI:15187164) in steady display mode and with robustness highlighting. (b) Zoomed-out view of
an entire enhanced path graph of a set of near-optimal alignments of proteins 1AU8A (NCBI GI:
115725) and 1TGSZ (NCBI GI: 230350) . (c) Zoomed-in detailedview of an enhanced path graph
of the same set of alignments of 1AU8A and 1TGSZ. Both sets of alignments created using BLO-
SUM50 -10/-2 with a neighborhood of 95% of optimal.
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overview of the set of alignments, we developed an enhanced version of the path graph that supports

detailed analysis. Our path graph was built using panning and zooming technology [88] that obviates

many of the problems with static displays.

As mentioned previously, a significant problem with path graphs is one of scale. If the path graph is

large enough that amino acid level comparisons are possible, then it is generally impossible to see

the entire path graph in one window. Likewise, for any but theshortest sequences, if the entire length

of the sequences is visible, then it is generally impossibleto discern any detail. The implication is

that users need a way to change the scale of the graph to see both detailed views as well as broad

overviews. Zooming elegantly solves this problem by allowing users to seamlessly transition from

broad overviews to more detailed perspectives on the path graphs.

In a zoomed-in view of a path graph, users must be able to move the section of the graph in view. The

usual solution of scroll bars does not work in this case because the path graphs are not necessarily

symmetrically diagonal in shape. Thus, any amount of scrolling across would be accompanied

by some variable amount of scrolling down and vice versa. Theneed for complicated scroll bar

interaction is eliminated by the zooming and panning navigation paradigm. Users can quickly

navigate to desired locations by either panning the displayto the region or zooming into the region.

A problem with the zooming and panning paradigm is the placement of the textual amino acid labels.

In a static plot, the characters are generally placed along the top and left axes. When zoomed-in,

however, the characters fall outside of the range of view. Toaccommodate this problem, our system

uses floating sequence labels that stay centered over their respective edges and maintain the same

scale as the path graph as users navigate around the path graph.

One difficulty in interpreting path graphs is due to the distance between the amino acid labels of the

two sequences. This perpendicular layout makes it difficultto see which amino acids are aligned

with which. The drag and pan paradigm solves the problem of physical distance between the labels.

To see how the amino acids of a particular section align, it issimply a matter of dragging that

section of the alignment to the top left corner of the displaywhere the sequences intersect and are

consequently relatively close to one another. An additional feature that further facilitates amino acid
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level comparison is context sensitive mouse-over highlighting. The amino acids being aligned are

highlighted when the mouse hovers over a particular edge in the graph. Gaps are represented using

this highlighting scheme by shrinking the width of the highlight box such that it falls between the

two amino acids where the gap is logically inserted.

Figures 4.2b and 4.2c are examples of a zoomable path graph generated by our system. The images

are of the same path graph, but at different resolutions. Figure 4.2b shows a zoomed-out, overview

of the enhanced path graph. No detail is discernible, however the red sections indicate unreliably

aligned sections. Figure 4.2c shows a zoomed-in, detailed view of the enhanced path graph. The

yellow highlight boxes show the amino acids that align for the edge at the intersection of the yellow

boxes. The blue path indicates the alignment currently under consideration. The red paths indicate

alternative alignments and the saturation of the green circles indicates robustness. The hue and

saturation of the green circles are identical to those used in the animated pairwise alignment, which

facilitates comparison between displays.

Another issue is that not all visible paths are near-optimalpaths. Our system uses animation to show

the valid paths. Just as the pairwise alignment cycles through the set of alignments displaying them

in sequence, the path graph cycles through the alignment set. As the animation cycles, the current

alignment is displayed in blue while the rest of the paths aredisplayed in red.

4.5. Support for Expertise

Human expertise is the only way to evaluate the quality of an alignment. To support the application

of this expertise, our system includes filtering and highlighting mechanisms. Additionally, users

can directly edit alignments to create their own. Coupled with the alignment generation algorithms,

this creates a mixed-initiative interaction scenario.
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4.5.1. Highlights

Highlights provide a mechanism for enhancing the display and presentation of alignments. By

supplementing the information in the sequences alone we allow users to apply their expertise to

achieve novel and unexpected results. All display annotations may be turned on and off by the user

to suit individual preferences. There are two types of highlights: edge quality highlights and external

highlights. Edge quality highlights are computed directlyfrom the set of near-optimal alignments,

are provided in all displays, and require no external data. External highlights depend on informa-

tion not derived from or inherent to the set of near-optimal alignments. These highlights include

sequence annotations automatically downloaded from external databases and highlights defined by

the researcher.

4.5.1.1. Edge Quality Highlights

Alone, the Steady Display algorithm provides powerful visual evidence of reliably aligned regions

of a set of alignments. However, we can also use the recorded pair-frequency information to color

the background of each pair according to the frequency of thepair (Figure 4.1). The most frequent

pairs are colored a saturated orange, with the color gradually decreasing in saturation in proportion

to the frequency of the pairings. Thus, in Figure 4.1, the regions around each of the three residues in

the serine protease catalytic triad of 1TGSZ and 1UVTH are the most saturated. The least frequent

pairings have a white background. In the specific alignment shown, the lightest colors correspond

to regions that are not present in 1TGSZ. This coloring provides further visual indication of the

consistency of certain sections of alignments.

Another highlight provides an alternative estimate of reliably aligned sequences. Robustness, dis-

cussed earlier, is a measure of how important a given pair of amino acids is to the overall score of that

alignment [58] (Figure 4.2a). Pairs of amino acids with highrobustness values have been shown

to correlate with pairs of amino acids known to align using 3-dimensional structural alignments

[58]. Similar to how we displayed the frequency highlight in[11], the more robust a pair of amino

acids, the darker is the background shading. Together with the steady display effect, the background
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Figure 4.3. Similarity Highlight

A TRY1_BOVIN (NCBI GI:2507249) and ELA1_PIG (NCBI GI:119253) alignment with the
steady display, names, numbers, identity and similarity options selected. Constructed using BLO-
SUM50 -10/-2 with near-optimal neighborhood of 95%.

coloring for frequency and robustness provide powerful visual evidence of an invariant property of

the set of alignments (i.e. those sections of the alignmentsthat are consistently aligned). See Figure

4.2a for an example of the pairwise alignment display with robustness highlighting. Robustness

is indicated by the green ovals where higher saturation indicates higher robustness. This figure

also shows the variable spacing between amino acid characters that results from the steady display

algorithm. Evidence of the unequal spacing of the characters is seen in the uneven right hand sides

of the rows.

Beyond the background highlights that provide assessmentsof alignment quality, the display pro-

vides sequence identity information and orientation highlights. The display can highlight matching

(red) and similar (pink) residues (Figure 4.3), which provides visual cues of sequence identity. For

ease of orientation and navigation the display allows the sequence names to be displayed along with

numbers that help identify locations within the sequences.

4.5.1.2. External Highlights

If the researcher specifies a protein by the GID/accession number then we also have access to the

annotation information available in the NCBI databases. Ifany alpha helices or beta strands are

found in this information, we provide an option for those annotations to be displayed. The icons

for both the alpha helices and beta strands are designed to combine into a more meaningful icon



Chapter 4. Generating and Visualizing Near-optimal Alignments 85

Figure 4.4. Secondary Structure Highlight

A TRY1_BOVIN (NCBI GI:2507249) and ELA1_PIG (NCBI GI:119253) alignment with the
steady display, names, numbers, and secondary structure information highlighted. Constructed us-
ing BLOSUM50 -10/-2 with near-optimal neighborhood of 95%.Note how when only one sequence
has a secondary structure annotation at a given location theicon appears gray and incomplete, but
when both sequences have an annotation at the same position,the icon changes color and appears
complete. The alpha helix icons that appear like arcs or upside down U’s; when these two regions
align, the helix symbols combine to form a loop symbolizing ahelix. Likewise, the icons for beta
strands come together to form an arrow.

when both residues in a given pair share the same secondary structure. For alpha helices, an arch

beneath the upper sequence combines with an X above the lowersequence to create a small loop

that symbolizes a helix (Figure 4.4). Similarly, the icons for beta strands combine to produce an

arrow. In addition to these automated annotations, users can specify their own annotations to be

highlighted on the alignments. These highlights allow emergent visual annotations like small loops

to appear when alpha-helix regions of proteins align.

While we believe the specified alpha-helix and beta strand icons make the most sense for those

particular annotations, users are not constrained to thoseicons. We have developed a system that

allows fine-grained control of display icons. Part of the management is the ability to map different

display icons to specific annotations which allows users to create highly customized displays. Figure

4.5 is an example where hydrogen bonded turn annotations arehighlighted using circle icons. The

choice of circle icons was arbitrary and could have been any one of the other available icons (e.g.

helix, strand, circle, triangle, or rectangle).

Apart from automatically downloaded annotations, users are also able to define and create their own

annotations using two other mechanisms. First, users are able to directly edit and create annotations
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Figure 4.5. Custom Highlight

A TRY1_BOVIN (NCBI GI:2507249) and ELA1_PIG (NCBI GI:119253) alignment with the
steady display, names, numbers, and hydrogen bonded turns highlighted with circles. Constructed
using BLOSUM50 -10/-2 with near-optimal neighborhood of 95%. The choice of circles was ar-
bitrary and could have been a different icon, such as the rectangles used in Figure 4.1. The icon
choice is made by the user.

within the software. This includes specifying specific locations to highlight and mapping icons to

the newly defined annotations. The yellow rectangles highlighting the functional residues in Figure

4.1 were manually entered into the system. Annotations can also be imported in GFF format by the

user from within the application. This is of use when users have pre-existing annotations that are

not available in public databases.

4.5.2. Filtering

Sets of near-optimal alignments can be very large making them intellectually unwieldy. To solve

this problem and to allow biologists to focus on specific features of alignments, we have provided

means for filtering alignments. Filters are a mechanism for winnowing large numbers of alternative

alignments. When a filter is applied, only alignments that pass the filter are displayed. Two filters

have been implemented and a clearly defined software interface allows for the easy creation of new

filters. The edge filter allows users to specify ranges of amino acids in each sequence that must

align with one another. For instance, if particular functional amino acids are known to align, then

a filter can be created that omits all alignments that do not align the specified regions. The second

filter allows users to omit or include alignments within a particular range of scores. This filter allows
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biologists to control their exploration of particularly large solution spaces and to explore hypotheses

about differences between solutions at different thresholds of the optimal score.

4.5.3. Mixed-initiative Interaction

Mixed-initiative interaction involves dynamically substituting human judgment for different levels

of computer automation [41][89]. Alignments are simply mathematical models optimized according

to particular scoring assumptions and as a consequence do not always produce alignments that

are biologically correct. As the near-optimal solution space is very large and is only sampled by

most algorithms, there might be no alignment that improves upon the optimal solution. However, a

near-optimal alignment usually exists that is close to improving upon the optimal. In these situations

users can substitute their judgment for that of the computer, effectively acting as the alignment

generation algorithm. Users are able to select any alignment and edit it by adding and removing

gaps. The resulting alignment is then added to the set of alignments under consideration. The new

alignment score is calculated according the same scoring parameters as the other alignments so that

users can evaluate the quality of their reasoning by comparison with the mathematical model. By

creating this feedback loop, users will be able to develop a better understanding of the limitations of

the algorithms or flaws in their own reasoning by comparing their output with that of the alignment

algorithms.

4.6. System Implementation

The system consists of three separate programs: 1) a Perl CGIscript that collects the sequences,

annotations and alignment parameters using the BioPerl [90] libraries and then manages the creation

of alignments, 2) C++ code that generates the set of near-optimal alignments defined by 1), and 3)

the Java code that displays the alignments. The display codeis written so that it may be run either

as an applet within a web browser, as a Webstart application,or as a stand alone application. This

modular design facilitates different modes of interactionwith the system and provides the freedom
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necessary to use the display in novel ways. The software described has been available on the internet

at [85]. Screenshots of the display can be seen in Figures 4.6a and b.

4.6.1. Alignment Transmission

Once the set of optimal and near-optimal alignments is generated, the alignments are formatted for

transmission to the display software. The actual alignments are encoded using the FASTA -m9c

encoding. For protein and DNA alignments, matches, insertions, and deletions are encoded by ’=’,

’+’, and ’-’ followed by the length of the match, insertion ordeletion. Thus, the alignment:

PYL-IDGSSHITQS

:.._:::__..::.

PLVEIDG--MLTQT

would be encoded as: "=3-1=3+2=5". The parameter information, sequence data, and alignment

information file is human readable and editable text.

4.6.2. Export

When run as an application (rather than an applet), users have the necessary permissions to write

files to local hard drives. We therefore allow users to save various data in the system such as sets of

alignments, single alignments in text format, and sets of annotations. We have also implemented a

mechanism that allows researchers to export images generated by the system in the Scalable Vector

Graphics (SVG) [91] format. This feature allows researchers to produce publication quality images

of alignments and path graphs that include all customized highlights and annotations.
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Figure 4.6. Alignment Display Screenshots



Chapter 4. Generating and Visualizing Near-optimal Alignments 90

4.7. Conclusion

The animated pairwise display is a novel visualization technique that effectively highlights invariant

regions of sets of near-optimal alignments. As demonstrated in Chapter 3, this information provides

insight into possible structural significance. Combined with the different highlighting schemes, the

animated pairwise alignment display provides a flexible interface for visualizing and exploring large

sets of near-optimal alignments. The zoomable path graph provides a mechanism for visualizing

entire sets of alignments in one screen. It solves the problems of scale inherent in static path graphs

by using zooming technology. By providing mouse-over highlights we improve the usability of the

path graph for detailed analysis. By providing filters we allow users to adjust and constrain the set

of alignments being displayed without the computationallyintensive task of recreating the set with

new parameters. The ability to manually edit and create alignments combines human expertise with

algorithmic efficiency, thereby creating a mixed-initiative interaction environment. This feature

can help users develop a deeper understanding of the algorithms behind sequence alignment. By

combining the detail-oriented pairwise alignment with theoverview-oriented path graph we have

developed a powerful system for exploring protein alignments in particular and sequence alignments

in general. The effectiveness of the software is evaluated in terms of two case studies related in

Chapter 5.



Chapter 5

Case Studies

To evaluate our system, we discuss two case studies where thesystem described in Chapter 4 was

successfully used in scientific endeavors.

5.1. Dermcidin vs. Lacritin Homology Confirmation

This first case involves the alignment of the proteins Lacritin (NCBI GI:15187164) with Dermcidin

(NCBI GI:16751921). Lacritin is a secretion enhancing factor that increases exocrine secretion in

the lacrimal gland (i.e. tear ducts) [92]. Dermcidin is a protein that is hypothesized to play a role in

breast cancer tumorigenesis [93]. Both proteins have been well studied in the laboratory, and as a

consequence, information about locations of various functional regions in the proteins was available

prior to this analysis. What was not known, however, was whether the two proteins are homologous

(i.e. share a common ancestor).

The homology relationship between the two proteins was firsthypothesized by a group at the Dana

Farber Cancer Institute based on functional characteristics of the proteins [G. Laurie, personal com-

munication, Nov. 2004]. This hypothesis could only be partially validated using other techniques.

This is not an unreasonable result because the sequences areless than 30% identical (meaning less

than 30% of the amino acids in the sequences match exactly). This range of sequence identity is the

so-called "twilight zone" [94] of homology detection because sequences often do not have enough

amino acids in common to develop the statistics used to establish homology. In this case, using
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the BLASTP [2] and PRSS [1] programs, the researchers were able to establish weak statistical

significance supporting the hypothesis that the proteins are homologous. Statistical significance

is expressed in terms of the expected number of times an alignment score as good or better than

that of Lacritin aligned with Dermcidin would be found in a given database of sequences. In this

case, using the default BLASTP parameters (BLOSUM62 scoring matrix, gap open of -11, and gap

extend of -1), the expected value for a database of 10,000 sequences was 0.01375, which is just less

than the significance threshold of 0.02. While this result isstatistically significant, it is a borderline

case. This result could not be further supported using a structural alignment because neither protein

structure had been solved. Therefore, the researchers usedour near-optimal alignment system to

analyze the proteins and increase their confidence in the homology of the proteins.

The researchers began their analysis by entering the sequence information about both sequences into

the system website and specifying the alignment parameters. Alignment parameters were chosen

based on empirical results [95] and personal experience (the parameters used were the BLOSUM50

scoring matrix, gap create = -10, gap extend = -2, near-optimal neighborhood of 95% of optimal).

The generation algorithm yielded a set of 55 near-optimal alignments. The researchers then viewed

the set of alignments and performed their analysis using theanimated pairwise alignment display.

When viewed in the animated pairwise alignment display witheither the robustness or frequency

highlight selected, the most salient section of the alignment is the first 20 amino acids of each

protein. This subsequence appears bright green in the display (Figure 4.2a). In addition to being

brightly colored, this section of the alignment also appears most steady in the animation (i.e. that

as alternative alignments are displayed, this section doesnot appear to change). Prior knowledge of

both proteins told the researchers that this region represents the signal peptide. It was expected that

the signal peptide regions would align because they are common to many different secretory proteins

and are expected to be very similar because they serve the same function. The salience of this region

demonstrates that our system helps identify highly conserved regions. However, because the signal

peptide is used only for transport during protein synthesis, and otherwise plays no function in the

behavior of the protein, it was of relatively little biological interest to these researchers. This is an

example of how expert knowledge of this particular protein helped direct the researcher’s attention

to regions of more immediate interest.
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Beyond the signal peptide are several other regions of interest. These regions were identified a

priori in laboratory experiments and our system was used to confirm hypotheses about them [92].

With the robustness highlight selected, the second most salient region of interest is amino acids

60-70 in Lacritin and 40-50 in Dermcidin (Figure 4.2a). Thissection includes two hypothesized

O-glycosylation sites in Lacritin. Similarly, a hypothesized N-glycosylation site surrounding amino

acid 120 of Lacritin is also highly salient among the conserved regions of the alignment. These

regions are of interest from a functional perspective and alignments of functional regions are ev-

idence of homology. Our system allowed researchers to develop confidence in the alignments of

these regions because of the characteristics indicated by the salience, namely consistent alignment

of those regions across the set of alignments and the robustness highlighting. This was new ev-

idence of homology for the researchers. The display was alsouseful to the researchers because

the identification of interesting regions confirmed previous results through different means. The

display also indicated three other salient regions. Based on current knowledge, it is unclear whether

the additional regions are of functional interest. However, the highlights suggest areas to consider

in future research.

One section of Dermcidin that clearly does not align with Lacritin is positions 20-40 of Dermcidin.

This is indicated in two primary ways by our system. First, the amino acids appear to move on

the screen as alternative alignments are presented. Second, the variability is made evident by the

absence of any coloring from either the frequency or robustness highlights. These visual signals

indicate that there is no way to consistently align those subsections of the two sequences. Addi-

tionally, the presence of a large number of gaps in the alignments of this section suggests that these

regions do not match. This subsection of Dermcidin was shownby Porter et al. [93] to nearly match

a mouse cachectic factor. A cachectic factor is an agent thatcauses a general loss of health, in this

case related to breast cancer. The fact that this section does not appear to align with Lacritin tells us

that the cachectic factor is most likely not present in Lacritin, which is good news for our tear ducts.

By correctly identifying different regions of the proteinsthat were expected to align, identifying

regions not expected to align, and providing levels of confidence in those assessments, the system

allowed the researchers to conclude that the proteins are homologous. It is important to note that
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this conclusion is based on the judgment of the researchers.The role our display system played in

this process was to provide the additional information needed to reach that conclusion.

The researchers did not use the zoomable path graph for theiranalysis. We speculate that this is

because they were unfamiliar with the path graph paradigm, which is likely because heretofore path

graph software has not been widely available. Some of the information used by the researchers in

this case can also be seen in an un-enhanced path graph, but not all. Path frequency can be partially

inferred by presence of large or small numbers of edges, but the un-enhanced path graph lacks the

robustness highlight that was an important tool for the researchers.

5.2. Near-optimal Alignment in Linear Space

This second case involves the use of our system to assist in the development of space efficient

near-optimal alignment generation algorithms. Current generation algorithms requireO(mn) space

(where m and n are the lengths of the sequences being aligned)[7][8]. Huang et al. [96] and Myers

and Miller [51] demonstrate techniques for generating single alignments inO(n) space. Our efforts

involved adapting these techniques to generate sets of near-optimal alignments. Central to this effort

were algorithms described by Huang et al. for finding the set of edges that comprise the lower left

and upper rightmost boundary paths of a path graph, henceforth called Left and Right. Figure 5.1

shows images of small path graphs with the left and right boundary paths highlighted. Our strategy

started with creating implementations of the Left and Rightalgorithms.

This case describes a part of the process in developing the space efficient alignment generation

algorithm: using the path graph display to verify the correctness of the Left and Right algorithm im-

plementations. Table 5.1 summarizes our final strategy and the system features used to accomplish

this goal. Starting with candidate implementations of the Left and Right algorithms, we needed to

validate that the algorithms correctly returned the left and rightmost paths. To do this, we used the

Waterman-Byers algorithm [7] to calculate all near-optimal alignments within the specified thresh-

old. We used this set to verify that the solutions generated by the Left and Right algorithms actually

fell on the left and rightmost boundaries of the path graph. The Waterman-Byers algorithm was used
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Figure 5.1. Leftmost and Rightmost Path Graphs

Views of the same path graph with the (a) bottom leftmost alignment highlighted and (b) top right-
most alignment highlighted. The sequences are random. Theywere selected to be short enough to
display clearly in one panel (no zooming necessary) and different enough so that distinct leftmost
and rightmost boundaries would be visible. The sequences and used solely for illustrative purposes.

to ensure that every possible edge was included in the set of alignments being displayed. It was then

a matter of looking at the path graph and verifying that the Left algorithm returned the leftmost

boundary of the Waterman-Byers set and the Right algorithm returned the rightmost boundary.

We chose relatively short, artificially created sequences for this task so that the Waterman-Byers

set would not be too large for the large neighborhood of optimal chosen. The reason for the large

neighborhood was so that there would be visually distinct left and rightmost boundaries. The align-

ment parameters used were the BLOSUM50 scoring matrix, gap open of -10, gap extend of -2, and

a near-optimal neighborhood of 75%. The result was an optimal score of 60 and a near-optimal

threshold of 45.

We then created two candidate alignments using our Left and Right algorithms. Once created, we

combined them with the alignments generated by the Waterman-Byers algorithm so that they could

be displayed together in our system. The end result was a set of 179 alignments (177 generated

alignments and two candidate alignments). The path graph generated from this set of alignments

can be seen in Figure 5.1.



Chapter 5. Case Studies 96

Table 5.1. Case Two Overview

Overview of the steps performed and system features used in Case two.

Step Task System Feature Used

1 Generate candidate alignments and the
Waterman-Byers set; combine the two.

The algorithm implementation we are
testing and the alignment generation soft-
ware.

2 View all alignments. Path graph display.
3 Attempt to find candidate alignments. Animation of path graph and filtering.
4 Manually create left and right alignments.Alignment editor, path graph display, and

pairwise display.
5 Find manually created alignments. Animation of path graph and filtering.
6 Verify manually created alignments. Path graph display.
7 Determine scores of manually created

alignments.
Alignment information screen.

Our system is not capable of highlighting more than one alignment at a time in the path graph

display. It is not possible to specify an alignment a priori for special treatment or guarantee the

order in which the alignments are highlighted. These deliberate design decisions ensure that the

user does not fixate on one "optimal" alignment and ignore therest of the set. However, this meant

that we first had to find the boundary path alignments within the set. The first step was to watch

the path graph animation to find our candidate alignments. Upon first view, we did not notice the

alignments in the animation. Instead of stepping through the alignments one-by-one, we decided to

limit our search space by filtering out those alignments thatdid not match some criteria found in

the left and rightmost edges. This meant making an edge filterthat included only alignments that

contained a few edges along either of the boundaries. Statedin terms of the pairwise alignment,

this meant specifying pairs of amino acids that must align. With increasingly tight filters (including

more and more edges along the boundaries), it became apparent that the left and rightmost paths

were not in our set of alignments. The Waterman-Byers algorithm should have returned all align-

ments within the specified threshold and we were confident that the output from the Left and Right

algorithms was included in the set. The two possible explanations for this inconsistency were that

our implementation of Waterman-Byers was flawed and was not generating all, or that the Left and

Right implementations were incorrect and returning erroneous alignments.

Determining which explanation was correct was relatively straightforward. Instead of relying on the
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Left and Right algorithms to create the boundary alignments, we created them manually. We used

the alignment-editing feature in the system to create the two alignments. We selected an alignment

to edit that was close to what we wanted, meaning it included several of the boundary edges we were

interested in, and then edited the alignment so that it fell completely on the boundary. This process

was facilitated by both the pairwise display and the path graph display. The path graph display made

the path perceptible while the pairwise display helped us see how the amino acids of the alignment

actually aligned. The need for the pairwise alignment displays was further emphasized because the

alignment-editing screen presents the alignment in a pairwise fashion. Once finished, we included

each of the manually created alignments with the original set.

To verify that the new alignments were correct, we viewed them in the path graph with the rest of

the set. To see the exact two alignments, we applied the filters previously created and quickly found

the new alignments. It was clear that we had created the boundary alignments correctly, because

when they were highlighted, the proper boundary edges of thepath graph were highlighted.

Now that we had our target alignments, we had to verify that either the new alignments were im-

properly excluded from the set by the Waterman-Byers algorithm or that our Left and Right imple-

mentations were incorrect. This was accomplished by viewing the alignment information screen

for each of the manually created alignments. This screen told us that the leftmost alignment had

a score of -10 and the rightmost had a score of -2, both well below the near-optimal threshold of

45. This meant that the alignments were properly excluded from the set of all alignments by the

Waterman-Byers algorithm. It also meant that our Left and Right implementations were incorrect.

This information was useful beyond evaluating the candidate Left and Right implementations. It

also led to the conclusion that arbitrary paths in the path graph created by a set of near-optimal

alignments were not necessarily near-optimal themselves.This effort also provided more evidence

that our implementation of Waterman-Byers was done correctly.

The display system provided a number of tools that facilitated this analysis. First, it was easy to

visualize the set of all near-optimal alignments in the pathgraph. We could also clearly see what the

target alignments for the Left and Right algorithms should be. The notion of left and right is entirely
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absent from the pairwise display paradigm. Had the pairwisedisplay been the only mechanism for

visualizing alignments, we would have had to compute the left and rightmost paths. Computing

these paths is not necessarily difficult, but it would be moreerror prone and far more work that

simply seeing the edge on the path graph.

Given the relatively large number of alignments to manage, the filters provided a simple mecha-

nism for quickly narrowing our search set. The successive application of tighter and tighter filters

provided the first evidence that the Left and Right output might not have been correct.

Once we were aware that a problem existed with our candidate alignments, the ability to edit and cre-

ate new alignments from within the application and to subsequently add the alignments to the set of

alignments for display made the validation process much quicker. Central to our ability to determine

whether the manually created alignments were in the Waterman-Byers set was the system’s ability

to calculate the alignment scores of the manually created alignments. This demonstrates the value

of a mixed-initiative paradigm where both human generated and computer generated alignments

can be created and compared directly.

After iterating through this process several times we were able to generate correct implementations

of the Left and Right algorithms and continue in our efforts to create aO(n) space near-optimal

alignment generation algorithm.
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Conclusion

The research described in this dissertation contributes tothe body of knowledge in both the Systems

Engineering and Bioinformatics disciplines as they relateto information visualization and sequence

alignment. Sequence based alignment remains an important tool for modern biologists because of

the inexpensive and readily available protein sequence information and the relative lack of structural

information. Near-optimal alignments provide an opportunity to exploit this sequence informa-

tion in novel ways. Visualization techniques are an important tool for bioinformatics researchers

for managing the ever increasing amount of available information. This research enhances our

understanding of the relationship between sequence based near-optimal alignments and structural

alignments and provides guidance that aids in the exploration and understanding of near-optimal

alignments. The research manifests itself in a software system that uses novel visualization tech-

niques to support the generation, display, and explorationof near-optimal solution space. Chapters

3 through 5 describe the analysis, model building, and software that constitute this research.

Chapter 2 describes the comparison of sets of near-optimal alignments with alternative structural

alignments. This research demonstrates that sets of near-optimal alignments compare favorably

to structural alignments. Prior to this research we did not understand how closely near-optimal

alignments could approximate structural alignments. Nor did we understand how well structural

alignments generated using different algorithms comparedto one another. We now understand that

near-optimal alignments can meet and exceed the quality of structural alignments. While this occurs

more frequently as percent identity increases, we also showthat it occurs with low percent identity

alignments. We also understand the extent to which the near-optimal alignment space intersects
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with the structural alignment space. We have disproved the hypothesis that the variation among

structural alignments is less than the variation between structural and near-optimal alignments. To-

gether, these results demonstrate that the near-optimal alignment solution space often intersects

with the structural solution space and that structural solutions cannot be guaranteed to be better

than near-optimal alignments. The implication of this workis that the information contained in

near-optimal alignments should be useful in understandingstructural alignments.

The results of Chapter 3 demonstrate that information derived from near-optimal alignments can be

used to better understand structural alignments. This is accomplished by construction of a proba-

bilistic model that accurately predicts whether or not particular pairs of amino acids can be expected

to align in structural alignments. We built a logistic regression model that incorporates three met-

rics derived from sets of near-optimal alignments: the frequency that an edge occurs within a set of

near-optimal alignments, the robustness of an edge, and themaximum bits-per-position score for an

edge. These predictor variables are shown to predict with 89% accuracy whether or not a given edge

is part of a structural alignment. This is a greater than 16% improvement over prior results that use

robustness alone to predict structural significance. The modeling results also provide insight into

the size of the near-optimal neighborhood that should be constructed. We have found that a neigh-

borhood of 95% of optimal provides a reasonable compromise between enough variation within the

set of alignments to uncover interesting edges, yet not so large as to become unmanageable or that

the predictive power of edges becomes obscured by large numbers. These results provide a concrete

mechanism for researchers to identify interesting regionsof alignments, predict which parts will

likely be of significance, and potentially improve homologymodels for protein sequences without

structural information.

The results to this point have shown that near-optimal alignments contain useful structural infor-

mation and one technique for extracting this information. Chapter 4 describes our research into

visualizing near-optimal alignments that attempts to facilitate their use by researchers without de-

manding programming expertise. We have developed a system that improves upon the traditional

paradigm of studying single, algorithmically optimal alignments as a means for understanding the

relationship between two proteins. The two parts of our strategy involve visualizing large sets

of alternative, near-optimal alignments and supporting the introduction of expert knowledge. The
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visualizations of alternative alignments consist of an overview path graph that provides perspective

on the entire set of alignments and a detailed pairwise animation that allows for close examination

of alternative alignments. The ability for users to exploitexpert knowledge is facilitated by the

application of highlights and filters and the ability to directly create and edit alignments.

The system is not a replacement, but rather a supplement to existing sequence analysis techniques

like single, optimal alignments, database searching methods, and others. The utility of our system is

that it allows detailed analysis of sets of protein alignments that was heretofore difficult to accom-

plish. Of particular interest is the ability to provide insight into alignments with low percent identity

where other tools lose effectiveness, such as those betweenLacritin and Dermcidin. The process of

analyzing large sets of alignments rather than single alignments provides more information about

how the two sequences align. This extra information helps develop confidence that certain sections

of proteins are reliably aligned and is valuable to all alignments, not just those with low percent

identity. Information about reliably aligned regions can be used to predict interesting regions of

alignments.

We have demonstrate that the software does actually enhanceperformance by presenting two case

studies in Chapter 5. Together, the two case studies demonstrate how the different features of the

system can be used to effectively explore sequence alignments and their associated algorithms. The

first case study shows how researchers used the animated pairwise display to confirm the homology

of two proteins with weakly statistically significant expectation values. In addition to confirming

past research, this increases our confidence in the ability of the software to predict regions of interest

in future cases. The second case study demonstrates the flexibility of the system and its ability to

be used in novel ways to support exploration and scientific discovery. This case describes how

the software was used to facilitate the implementation of anO(n) space near-optimal alignment

generation algorithm.

In conclusion, we believe that the research presented here and the system developed represent sig-

nificant improvement in our understanding of near-optimal alignments and the ability of researchers

to closely study protein sequence alignments.
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6.1. Future Work

This work could be extended in many ways. Some possible future projects include further analysis

of the relationship between structural and near-optimal alignments, further refinement of the logistic

regression model, and improvements in the software system.

The results in Chapter 2 (Figure 2.1) suggest that the using near-optimal alignments in conjunc-

tion with structural alignment algorithms could improve structural alignment algorithms. It would

be interesting to study whether it would advantageous to usethe near-optimal alignment with the

highest structal score to either seed a structural alignment algorithm (i.e. use the alignment as an

initialization point for structural alignment heuristics) or as a structural alignment itself.

While we believe that the logistic regression model is robust and stable across different inputs, it

might be useful for study this further. In particular, it would be useful to characterize the perfor-

mance of the logistic regression model between pairs of onlytwo proteins rather than a sample

consisting of edges from many different pairs. It would alsobe interesting to combine the four

response variables described in Chapter 3 into a single categorical variable and develop a model

based on that.

The enhanced path graph solves many of the problems inherentwith static path graph presentations

However one problem remains: because not all paths through the path graph are valid near-optimal

alignments, the path graph can be misleading. Our solution of highlighting individual paths with

animation is somewhat dissatisfying. Because this technique requires animation to see all of the

valid alignments, we lose some of the benefit of a single overview display. One potential solution

would be to expand the path graph into three dimensions with depth providing perspectives on single

alignments.

There are several aspects of the display system that could provide beneficial results. From a us-

ability perspective, future work on the display system should involve evaluating the effectiveness

of the display software in usability studies to further refine the user interface. In terms of display

features, the ability to highlight the path graph in a manneranalogous to the pairwise display could
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be substantially enhanced. It would also be interesting to explore the ability to dynamically filter

alignments by dragging the mouse to select regions that should or should not align. This technique

could be used in either the pairwise or path graph display.

A feature that has been repeatedly requested by users and would extend the functionality of the

system is the ability to display alternative multiple alignments1. An initial problem would be the

generation of alternative multiple alignments because, although possible [97], it is not clear that

“efficient” translates to interactive speed. The techniques used for the animated pairwise alignment

would work for multiple alignments, however it is unclear whether the path graph techniques could

be applied.

1 Alignments of three or more sequences.
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Appendix A

Protein Data

Table A.1. Protein List

A listing of the CATH IDs, expectation, percent identity, the number of alignments, and the sample
set for each pair of protein domains used in Chapters 2 and 3. The number of alignments is the
number of near-optimal alignments generated with a neighborhood of 95%, BLOSUM50 -10/-2,
BLOSUM50 -12/-2, and BLOSUM62 -11/-1.

Sequence 1

CATH ID

Sequence 2

CATH ID

Expectation Percent

Identity

Number of

Alignments

Sample

1a4704 1b90A3 8.2e-09 34.6 5552 test

1a4704 1cyg03 1.3 18.6 991 test

1akl02 1srp02 0 51.8 80203 train

1akl02 1cglA0 0.00096 22.4 16573 train

1akl02 1bqqM0 0.14 20.2 15053 train

1ao6A5 1uor03 2.2e-07 19.5 3110 train

1aqzB0 1rtu00 0.013 21.9 4587 train

1aqzB0 1rds00 1.7 23.3 5099 train

1auq00 1ao3A0 1.6e-08 20.8 15586 train

1b2rA2 1bx0A2 1.4013e-45 52.1 37782 test

1b2rA2 1amoA4 8e-09 29.5 16106 test

1b2rA2 1ndh02 0.00068 21.3 7389 test

1b5600 1pmpA0 5.9e-37 55.6 20160 train

1b5600 1dc9A0 1.1e-09 24.4 7769 train
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1b5600 1lfo00 0.044 19.4 5126 train

1b5600 1mdc00 0.22 21.2 3826 train

1bbhA0 1cpq00 9.3e-08 26.3 8859 test

1bcg00 1b7dA0 9.6e-07 33.3 2888 train

1bhxB0 1autC2 4.4e-14 29.9 8933 train

1bhxB0 1ddjA2 1.8e-10 26.2 8726 train

1bhxB0 1b0fA2 0.0057 19.0 3165 train

1bhxB0 2kaiB0 0.22 15.0 6991 train

1bylA0 1qtoA0 3.7e-35 58.5 17467 train

1cd2A0 1vdrA0 2.7e-08 24.2 16259 test

1ce7B2 2aaiB2 1.1e-24 51.6 17944 test

1ce7B2 1abrB1 0.0041 21.8 4050 test

1ce7B2 1ce7B1 0.12 22.7 3840 test

1ck4B0 1ao3A0 1.6e-09 24.0 16822 train

1cl7H0 1ae6H1 1.9e-28 48.9 19096 test

1cl7H0 2hmiD1 1e-10 27.3 12500 test

1cl7H0 2rhe00 0.00051 26.7 5799 test

1cl7H0 1cf8H2 0.1 13.6 5918 test

1cm8A2 1erk02 0 42.8 56043 test

1cm8A2 1agwA2 5.8e-10 24.6 22469 test

1cm8A2 1ckjA2 0.00056 19.6 13187 test

1cm8A2 1csn02 0.29 17.2 11238 test

1cv2A0 1cqwA0 0 48.5 118203 train

1cv2A0 1cqzB0 6.1e-09 13.7 586749 train

1cv2A0 1a7uA0 0.004 21.8 35270 train

1cv2A0 1qj4A0 1.2 18.0 17847 train

1cvuA1 1xkbA1 6.6e-06 38.1 617 test

1cvuA1 1autL1 0.0046 29.2 701 test
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1cvuA1 1klo02 0.65 28.8 710 test

1d0gR1 1extB1 0.0028 17.2 316 test

1eepA0 1b3oA0 6.7e-40 37.5 100615 train

1eepA0 1rpxA0 0.025 18.8 17775 train

1eepA0 1gylA0 1.1 19.6 36481 train

1entE2 1aptE2 3.7e-33 49.4 29628 train

1entE2 1psn02 3.7e-09 28.2 16910 train

1entE2 1mpp02 0.0039 22.9 12557 train

1entE2 1pfzA2 0.11 15.5 7959 train

1etpA1 1cnoG0 1.4e-14 44.1 7212 test

1etpA1 1fcdC1 0.0012 26.4 2659 test

1etpA1 1b7vA0 0.2 25.0 1737 test

1extB1 1tnrR2 0.37 22.0 1065 train

1f2lD0 1dokA0 7.4e-10 35.1 2593 train

1f2lD0 1qe6D0 0.00092 25.7 1570 train

1f2lD0 1tvxB0 1.6 20.5 543 train

1frrA0 1fxiA0 5.8e-28 58.3 10316 test

1frrA0 1qlaB1 0.023 24.3 2276 test

1frrA0 1c4aA1 0.24 25.3 1225 test

1hdaB0 1outB0 2.2e-35 47.9 23460 test

1hdaB0 1myt00 2.1e-10 26.8 9599 test

1hdaB0 1hbiA0 0.0026 22.3 4883 test

1hdaB0 1ash00 0.12 21.9 3958 test

1ihbA0 1awcB0 1.6e-09 25.9 9350 test

1jafA0 2ccyA0 1.8e-10 36.4 11138 test

1mpyA2 1dhy02 0.0061 23.7 5245 test

1mpyA2 1mpyA1 0.37 19.3 3639 test

1nfiC1 1iknC0 4.1e-26 42.6 13248 test
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1nfiC1 1a02N2 0.013 18.7 2338 test

1p3801 1jnk01 4.6e-27 43.3 12894 train

1p3801 1vr2A1 0.00081 23.0 2917 train

1p3801 1bygA1 0.35 17.7 1290 train

1qkmA0 1qktA0 0 57.0 82962 test

1qkmA0 1dkfB0 1.3e-10 19.9 19257 test

1qkmA0 2prgB0 0.0021 20.2 17130 test

1qkmA0 1gwxA0 0.96 16.4 12728 test

1rds00 1fus00 1e-24 54.6 11891 train

1rds00 1rtu00 7.6e-10 31.4 8707 train

1rmg00 1czfA0 3.7e-08 19.7 54615 train

1svy00 1d0nA2 1.3e-15 36.0 6915 train

1svy00 1d0nA4 0.0082 21.3 1842 train

1svy00 1d0nA6 0.18 23.4 1860 train

1tmo04 1eu1A4 3.9e-37 52.0 36455 train

1tmo04 1fdi04 0.0095 22.3 4410 train

1tmo04 2napA4 1.3 19.1 4341 train

2hpdA0 1egyA0 2.3e-07 19.5 81064 test

3sxlA2 1b7fA1 0.00017 25.6 280 train

3sxlA2 1ha102 0.0022 17.1 323 train

3sxlA2 1urnA0 0.17 15.6 799 train

4mdhA2 1bdmB2 2e-38 49.4 37450 test

4mdhA2 1d3aA1 0.022 20.9 7201 test

4mdhA2 1ldm02 0.29 20.5 6898 test
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Sample Statistics

Table B.1. Training Sample Sizes

The number of edges for each scoring parameter combination and near-optimal neighborhood in the
training sample.

Neighborhood BLOSUM50 -10/-2 BLOSUM50 -12-2 BLOSUM62 -11/-1 Combined

Optimal 7271 7158 7223 21652
95% 17482 15249 14042 46773
75% 127634 114691 106611 348936
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Table B.2. Testing Sample Sizes

The number of edges for each scoring parameter combination and near-optimal neighborhood in the
test sample.

Neighborhood BLOSUM50 -10/-2 BLOSUM50 -12-2 BLOSUM62 -11/-1 Combined

Optimal 6576 6433 6525 19534
95% 12880 11220 10735 34835
75% 83798 70518 75636 229952
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Model Factor ANOVA Results

ANOVA results determining whether model parameter estimates were independent of sample size

and scoring parameter combination for each of the 4 possibleresponse thresholds.

[1] "Threshold: 1"
[1] "Robust"

Df Sum Sq Mean Sq F value Pr(>F)
factor(sample) 4 0.06091 0.01523 0.1231 0.9714
factor(alg) 3 0.33994 0.11331 0.9161 0.4623
Residuals 12 1.48424 0.12369
[1] "Frequency"

Df Sum Sq Mean Sq F value Pr(>F)
factor(sample) 4 0.14596 0.03649 0.4473 0.7725
factor(alg) 3 0.30795 0.10265 1.2583 0.3324
Residuals 12 0.97891 0.08158
[1] "Maximum bits-per-position"

Df Sum Sq Mean Sq F value Pr(>F)
factor(sample) 4 0.1620 0.0405 0.1929 0.9374358
factor(alg) 3 9.7937 3.2646 15.5503 0.0001953 ***
Residuals 12 2.5192 0.2099
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

[1] "Threshold: 2"
[1] "Robust"

Df Sum Sq Mean Sq F value Pr(>F)
factor(sample) 4 0.07963 0.01991 0.1162 0.9742
factor(alg) 3 0.66266 0.22089 1.2896 0.3227
Residuals 12 2.05534 0.17128
[1] "Frequency"

Df Sum Sq Mean Sq F value Pr(>F)
factor(sample) 4 0.14190 0.03547 0.2787 0.8861
factor(alg) 3 0.59148 0.19716 1.5490 0.2528
Residuals 12 1.52743 0.12729
[1] "Maximum bits-per-position"

Df Sum Sq Mean Sq F value Pr(>F)
factor(sample) 4 0.5443 0.1361 0.4915 0.7423000
factor(alg) 3 10.1426 3.3809 12.2110 0.0005876 ***
Residuals 12 3.3225 0.2769
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

[1] "Threshold: 3"
[1] "Robust"

Df Sum Sq Mean Sq F value Pr(>F)
factor(sample) 4 0.3194 0.0799 0.2907 0.8784
factor(alg) 3 0.9764 0.3255 1.1850 0.3566
Residuals 12 3.2959 0.2747
[1] "Frequency"

Df Sum Sq Mean Sq F value Pr(>F)
factor(sample) 4 0.28262 0.07065 0.3467 0.8413
factor(alg) 3 0.95350 0.31783 1.5597 0.2503
Residuals 12 2.44541 0.20378
[1] "Maximum bits-per-position"
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Df Sum Sq Mean Sq F value Pr(>F)
factor(sample) 4 0.3878 0.0969 0.2444 0.907573
factor(alg) 3 12.5553 4.1851 10.5513 0.001106 **
Residuals 12 4.7597 0.3966
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

[1] "Threshold: 4"
[1] "Robust"

Df Sum Sq Mean Sq F value Pr(>F)
factor(sample) 4 1.06422 0.26605 1.6891 0.2168
factor(alg) 3 0.61945 0.20648 1.3109 0.3162
Residuals 12 1.89015 0.15751
[1] "Frequency"

Df Sum Sq Mean Sq F value Pr(>F)
factor(sample) 4 0.66212 0.16553 0.9745 0.4570
factor(alg) 3 0.95178 0.31726 1.8677 0.1889
Residuals 12 2.03842 0.16987
[1] "Maximum bits-per-position"

Df Sum Sq Mean Sq F value Pr(>F)
factor(sample) 4 1.2602 0.3150 1.7121 0.2118
factor(alg) 3 19.7619 6.5873 35.7980 2.89e-06 ***
Residuals 12 2.2082 0.1840
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Model Analysis Output

The logistic regession results as returned by R.

[1] "==================================================================="
[1] "Formula used: "
struct ~ freq + robust + mbits
[1] "glm print:"
Call: glm(formula = formula, family = binomial, data = trainSet)
Coefficients:
(Intercept) freq robust mbits

-9.806 4.720 5.905 2.068
Degrees of Freedom: 4999 Total (i.e. Null); 4996 Residual
Null Deviance: 6237
Residual Deviance: 3440 AIC: 3448
[1] "glm summary:"
Call:
glm(formula = formula, family = binomial, data = trainSet)
Deviance Residuals:

Min 1Q Median 3Q Max
-2.0689 -0.3647 -0.2583 0.5933 2.9445
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -9.8063 1.9190 -5.110 3.22e-07 ***
freq 4.7204 0.1334 35.382 < 2e-16 ***
robust 5.9045 2.0161 2.929 0.00340 **
mbits 2.0680 0.1848 11.188 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 6236.6 on 4999 degrees of freedom
Residual deviance: 3440.4 on 4996 degrees of freedom
AIC: 3448.4
Number of Fisher Scoring iterations: 5
[1] "glm anova:"
Analysis of Deviance Table
Model: binomial, link: logit
Response: struct
Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 4999 6236.6
freq 1 2634.8 4998 3601.9 0.0
robust 1 15.7 4997 3586.1 7.345e-05
mbits 1 145.8 4996 3440.4 1.460e-33
[1] "plot glm"
[1] "predict"
[1] "ROC"
[1] "Area under ROC curve:"

Model Area.adj p.adj Area p-value binorm.area
1 Model 1 0.890626 0 0.890626 0 NA
Logistic Regression Model
lrm(formula = formula, data = trainSet, x = TRUE, y = TRUE, maxit = 20)
Frequencies of Responses

0 1
3421 1579

Obs Max Deriv Model L.R. d.f. P C Dxy
5000 5e-11 2796.25 3 0 0.908 0.817

Gamma Tau-a R2 Brier
0.819 0.353 0.601 0.104
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Coef S.E. Wald Z P
Intercept -9.806 1.9191 -5.11 0.0000
freq 4.720 0.1334 35.38 0.0000
robust 5.905 2.0162 2.93 0.0034
mbits 2.068 0.1849 11.19 0.0000
[1] "lrm gof"
Sum of squared errors Expected value|H0 SD

5.199493e+02 5.325435e+02 2.005560e+00
Z P

-6.279619e+00 3.394047e-10
[1] "==================================================================="
[1] "Formula used: "
struct ~ freq * robust * mbits
[1] "glm print:"
Call: glm(formula = formula, family = binomial, data = trainSet)
Coefficients:

(Intercept) freq robust mbits
41.48 -49.35 -46.07 -111.69

freq:robust freq:mbits robust:mbits freq:robust:mbits
54.39 76.91 113.77 -71.99

Degrees of Freedom: 4999 Total (i.e. Null); 4992 Residual
Null Deviance: 6237
Residual Deviance: 3118 AIC: 3134
[1] "glm summary:"
Call:
glm(formula = formula, family = binomial, data = trainSet)
Deviance Residuals:

Min 1Q Median 3Q Max
-2.9195 -0.3509 -0.1939 0.2794 3.2653
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 41.484 6.563 6.321 2.60e-10 ***
freq -49.354 7.788 -6.337 2.34e-10 ***
robust -46.071 6.857 -6.719 1.83e-11 ***
mbits -111.693 27.111 -4.120 3.79e-05 ***
freq:robust 54.390 8.109 6.707 1.99e-11 ***
freq:mbits 76.912 34.416 2.235 0.0254 *
robust:mbits 113.770 28.346 4.014 5.98e-05 ***
freq:robust:mbits -71.989 35.850 -2.008 0.0446 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 6236.6 on 4999 degrees of freedom
Residual deviance: 3118.1 on 4992 degrees of freedom
AIC: 3134.1
Number of Fisher Scoring iterations: 7
[1] "glm anova:"
Analysis of Deviance Table
Model: binomial, link: logit
Response: struct
Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 4999 6236.6
freq 1 2634.8 4998 3601.9 0.0
robust 1 15.7 4997 3586.1 7.345e-05
mbits 1 145.8 4996 3440.4 1.460e-33
freq:robust 1 11.7 4995 3428.7 6.237e-04
freq:mbits 1 279.3 4994 3149.4 1.092e-62
robust:mbits 1 27.1 4993 3122.4 1.976e-07
freq:robust:mbits 1 4.2 4992 3118.1 3.957e-02
[1] "plot glm"
[1] "predict"
[1] "ROC"
[1] "Area under ROC curve:"

Model Area.adj p.adj Area p-value binorm.area
1 Model 1 0.908444 0 0.908444 0 NA
Logistic Regression Model
lrm(formula = formula, data = trainSet, x = TRUE, y = TRUE, maxit = 20)
Frequencies of Responses

0 1
3421 1579

Obs Max Deriv Model L.R. d.f. P C Dxy
5000 2e-10 3118.5 7 0 0.928 0.855

Gamma Tau-a R2 Brier
0.856 0.37 0.651 0.099

Coef S.E. Wald Z P
Intercept 41.48 6.563 6.32 0.0000
freq -49.35 7.788 -6.34 0.0000
robust -46.07 6.857 -6.72 0.0000
mbits -111.69 27.111 -4.12 0.0000
freq * robust 54.39 8.109 6.71 0.0000
freq * mbits 76.91 34.416 2.23 0.0254
robust * mbits 113.77 28.346 4.01 0.0001
freq * robust * mbits -71.99 35.850 -2.01 0.0446
[1] "lrm gof"
Sum of squared errors Expected value|H0 SD

494.9982380 493.2419211 2.0653061
Z P

0.8503906 0.3951080
[1] "==================================================================="
[1] "Formula used: "
struct ~ poly(freq, 2) + poly(robust, 2) + poly(mbits, 2)
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[1] "glm print:"
Call: glm(formula = formula, family = binomial, data = trainSet)
Coefficients:

(Intercept) poly(freq, 2)1 poly(freq, 2)2 poly(robust, 2)1
-1.503 153.176 -9.012 14.224

poly(robust, 2)2 poly(mbits, 2)1 poly(mbits, 2)2
13.525 45.554 -22.094

Degrees of Freedom: 4999 Total (i.e. Null); 4993 Residual
Null Deviance: 6237
Residual Deviance: 3372 AIC: 3386
[1] "glm summary:"
Call:
glm(formula = formula, family = binomial, data = trainSet)
Deviance Residuals:

Min 1Q Median 3Q Max
-2.0035 -0.3220 -0.2718 0.5070 3.1777
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.50335 0.05943 -25.297 < 2e-16 ***
poly(freq, 2)1 153.17566 4.59308 33.349 < 2e-16 ***
poly(freq, 2)2 -9.01214 2.89360 -3.115 0.00184 **
poly(robust, 2)1 14.22428 3.07510 4.626 3.73e-06 ***
poly(robust, 2)2 13.52522 2.78759 4.852 1.22e-06 ***
poly(mbits, 2)1 45.55368 3.92487 11.606 < 2e-16 ***
poly(mbits, 2)2 -22.09358 3.48996 -6.331 2.44e-10 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 6236.6 on 4999 degrees of freedom
Residual deviance: 3371.9 on 4993 degrees of freedom
AIC: 3385.9
Number of Fisher Scoring iterations: 6
[1] "glm anova:"
Analysis of Deviance Table
Model: binomial, link: logit
Response: struct
Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 4999 6236.6
poly(freq, 2) 2 2635.5 4997 3601.1 0.0
poly(robust, 2) 2 46.0 4995 3555.1 1.006e-10
poly(mbits, 2) 2 183.2 4993 3371.9 1.639e-40
[1] "plot glm"
[1] "predict"
[1] "ROC"
[1] "Area under ROC curve:"

Model Area.adj p.adj Area p-value binorm.area
1 Model 1 0.8973603 0 0.8973603 0 NA
Logistic Regression Model
lrm(formula = formula, data = trainSet, x = TRUE, y = TRUE, maxit = 20)
Frequencies of Responses

0 1
3421 1579

Obs Max Deriv Model L.R. d.f. P C Dxy
5000 1e-09 2864.75 6 0 0.909 0.818

Gamma Tau-a R2 Brier
0.82 0.354 0.612 0.102

Coef S.E. Wald Z P
Intercept -1.503 0.05943 -25.30 0.0000
1 153.176 4.59308 33.35 0.0000
2 -9.012 2.89360 -3.11 0.0018
1 14.224 3.07510 4.63 0.0000
2 13.525 2.78759 4.85 0.0000
1 45.554 3.92488 11.61 0.0000
2 -22.094 3.48997 -6.33 0.0000
[1] "lrm gof"
Sum of squared errors Expected value|H0 SD

509.008457 522.269358 1.538323
Z P

-8.620361 0.000000
[1] "==================================================================="
[1] "Formula used: "
struct ~ poly(freq, 2) * poly(robust, 2) * poly(mbits, 2)
[1] "glm print:"
Call: glm(formula = formula, family = binomial, data = trainSet)
Coefficients:

(Intercept)
-1.198e+00

poly(freq, 2)1
1.468e+02

poly(freq, 2)2
1.382e+01

poly(robust, 2)1
4.622e+01

poly(robust, 2)2
3.117e+01

poly(mbits, 2)1
2.937e+01

poly(mbits, 2)2
-3.813e+00

poly(freq, 2)1:poly(robust, 2)1
5.705e+02
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poly(freq, 2)2:poly(robust, 2)1
1.951e+03

poly(freq, 2)1:poly(robust, 2)2
-3.682e+02

poly(freq, 2)2:poly(robust, 2)2
1.417e+03

poly(freq, 2)1:poly(mbits, 2)1
2.908e+03

poly(freq, 2)2:poly(mbits, 2)1
7.887e+02

poly(freq, 2)1:poly(mbits, 2)2
-1.919e+03

poly(freq, 2)2:poly(mbits, 2)2
4.938e+02

poly(robust, 2)1:poly(mbits, 2)1
7.819e+03

poly(robust, 2)2:poly(mbits, 2)1
4.536e+03

poly(robust, 2)1:poly(mbits, 2)2
3.675e+03

poly(robust, 2)2:poly(mbits, 2)2
2.267e+03

poly(freq, 2)1:poly(robust, 2)1:poly(mbits, 2)1
-2.378e+05

poly(freq, 2)2:poly(robust, 2)1:poly(mbits, 2)1
2.085e+05

poly(freq, 2)1:poly(robust, 2)2:poly(mbits, 2)1
-2.057e+05

poly(freq, 2)2:poly(robust, 2)2:poly(mbits, 2)1
1.260e+05

poly(freq, 2)1:poly(robust, 2)1:poly(mbits, 2)2
-1.279e+05

poly(freq, 2)2:poly(robust, 2)1:poly(mbits, 2)2
1.356e+05

poly(freq, 2)1:poly(robust, 2)2:poly(mbits, 2)2
-1.554e+05

poly(freq, 2)2:poly(robust, 2)2:poly(mbits, 2)2
9.515e+04

Degrees of Freedom: 4999 Total (i.e. Null); 4973 Residual
Null Deviance: 6237
Residual Deviance: 3025 AIC: 3079
[1] "glm summary:"
Call:
glm(formula = formula, family = binomial, data = trainSet)
Deviance Residuals:

Min 1Q Median 3Q Max
-2.5832 -0.3931 -0.1777 0.1821 4.5436
Coefficients:

Estimate Std. Error z value
(Intercept) -1.198e+00 1.214e-01 -9.862
poly(freq, 2)1 1.468e+02 7.944e+00 18.476
poly(freq, 2)2 1.382e+01 5.598e+00 2.469
poly(robust, 2)1 4.622e+01 1.479e+01 3.125
poly(robust, 2)2 3.117e+01 1.728e+01 1.804
poly(mbits, 2)1 2.937e+01 1.244e+01 2.361
poly(mbits, 2)2 -3.813e+00 1.046e+01 -0.365
poly(freq, 2)1:poly(robust, 2)1 5.705e+02 9.044e+02 0.631
poly(freq, 2)2:poly(robust, 2)1 1.951e+03 5.382e+02 3.625
poly(freq, 2)1:poly(robust, 2)2 -3.682e+02 1.108e+03 -0.332
poly(freq, 2)2:poly(robust, 2)2 1.417e+03 6.378e+02 2.222
poly(freq, 2)1:poly(mbits, 2)1 2.908e+03 8.002e+02 3.634
poly(freq, 2)2:poly(mbits, 2)1 7.887e+02 5.220e+02 1.511
poly(freq, 2)1:poly(mbits, 2)2 -1.919e+03 6.566e+02 -2.923
poly(freq, 2)2:poly(mbits, 2)2 4.938e+02 4.362e+02 1.132
poly(robust, 2)1:poly(mbits, 2)1 7.819e+03 1.407e+03 5.557
poly(robust, 2)2:poly(mbits, 2)1 4.536e+03 1.699e+03 2.670
poly(robust, 2)1:poly(mbits, 2)2 3.675e+03 1.068e+03 3.442
poly(robust, 2)2:poly(mbits, 2)2 2.267e+03 1.445e+03 1.569
poly(freq, 2)1:poly(robust, 2)1:poly(mbits, 2)1 -2.378e+05 8.572e+04 -2.774
poly(freq, 2)2:poly(robust, 2)1:poly(mbits, 2)1 2.085e+05 5.229e+04 3.987
poly(freq, 2)1:poly(robust, 2)2:poly(mbits, 2)1 -2.057e+05 1.082e+05 -1.901
poly(freq, 2)2:poly(robust, 2)2:poly(mbits, 2)1 1.260e+05 6.127e+04 2.057
poly(freq, 2)1:poly(robust, 2)1:poly(mbits, 2)2 -1.279e+05 6.493e+04 -1.970
poly(freq, 2)2:poly(robust, 2)1:poly(mbits, 2)2 1.356e+05 4.149e+04 3.268
poly(freq, 2)1:poly(robust, 2)2:poly(mbits, 2)2 -1.554e+05 9.197e+04 -1.689
poly(freq, 2)2:poly(robust, 2)2:poly(mbits, 2)2 9.515e+04 5.030e+04 1.892

Pr(>|z|)
(Intercept) < 2e-16 ***
poly(freq, 2)1 < 2e-16 ***
poly(freq, 2)2 0.013552 *
poly(robust, 2)1 0.001781 **
poly(robust, 2)2 0.071264 .
poly(mbits, 2)1 0.018246 *
poly(mbits, 2)2 0.715352
poly(freq, 2)1:poly(robust, 2)1 0.528176
poly(freq, 2)2:poly(robust, 2)1 0.000289 ***
poly(freq, 2)1:poly(robust, 2)2 0.739535
poly(freq, 2)2:poly(robust, 2)2 0.026314 *
poly(freq, 2)1:poly(mbits, 2)1 0.000279 ***
poly(freq, 2)2:poly(mbits, 2)1 0.130775
poly(freq, 2)1:poly(mbits, 2)2 0.003467 **
poly(freq, 2)2:poly(mbits, 2)2 0.257598
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poly(robust, 2)1:poly(mbits, 2)1 2.74e-08 ***
poly(robust, 2)2:poly(mbits, 2)1 0.007592 **
poly(robust, 2)1:poly(mbits, 2)2 0.000578 ***
poly(robust, 2)2:poly(mbits, 2)2 0.116748
poly(freq, 2)1:poly(robust, 2)1:poly(mbits, 2)1 0.005533 **
poly(freq, 2)2:poly(robust, 2)1:poly(mbits, 2)1 6.70e-05 ***
poly(freq, 2)1:poly(robust, 2)2:poly(mbits, 2)1 0.057317 .
poly(freq, 2)2:poly(robust, 2)2:poly(mbits, 2)1 0.039712 *
poly(freq, 2)1:poly(robust, 2)1:poly(mbits, 2)2 0.048795 *
poly(freq, 2)2:poly(robust, 2)1:poly(mbits, 2)2 0.001083 **
poly(freq, 2)1:poly(robust, 2)2:poly(mbits, 2)2 0.091129 .
poly(freq, 2)2:poly(robust, 2)2:poly(mbits, 2)2 0.058549 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 6236.6 on 4999 degrees of freedom
Residual deviance: 3024.8 on 4973 degrees of freedom
AIC: 3078.8
Number of Fisher Scoring iterations: 9
[1] "glm anova:"
Analysis of Deviance Table
Model: binomial, link: logit
Response: struct
Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev
NULL 4999 6236.6
poly(freq, 2) 2 2635.5 4997 3601.1
poly(robust, 2) 2 46.0 4995 3555.1
poly(mbits, 2) 2 183.2 4993 3371.9
poly(freq, 2):poly(robust, 2) 4 35.0 4989 3336.8
poly(freq, 2):poly(mbits, 2) 4 246.6 4985 3090.2
poly(robust, 2):poly(mbits, 2) 4 30.8 4981 3059.4
poly(freq, 2):poly(robust, 2):poly(mbits, 2) 8 34.5 4973 3024.8

P(>|Chi|)
NULL
poly(freq, 2) 0.0
poly(robust, 2) 1.006e-10
poly(mbits, 2) 1.639e-40
poly(freq, 2):poly(robust, 2) 4.550e-07
poly(freq, 2):poly(mbits, 2) 3.444e-52
poly(robust, 2):poly(mbits, 2) 3.322e-06
poly(freq, 2):poly(robust, 2):poly(mbits, 2) 3.255e-05
[1] "plot glm"
[1] "predict"
[1] "ROC"
[1] "Area under ROC curve:"

Model Area.adj p.adj Area p-value binorm.area
1 Model 1 0.9070894 0 0.9070894 0 NA
Logistic Regression Model
lrm(formula = formula, data = trainSet, x = TRUE, y = TRUE, maxit = 20)
Frequencies of Responses

0 1
3421 1579

Obs Max Deriv Model L.R. d.f. P C Dxy
5000 3e-09 3211.79 26 0 0.931 0.862

Gamma Tau-a R2 Brier
0.863 0.373 0.665 0.097

Coef S.E. Wald Z P
Intercept -1.198e+00 1.214e-01 -9.86 0.0000
1 1.468e+02 7.944e+00 18.48 0.0000
2 1.382e+01 5.598e+00 2.47 0.0136
1 4.622e+01 1.479e+01 3.12 0.0018
2 3.117e+01 1.728e+01 1.80 0.0713
1 2.937e+01 1.244e+01 2.36 0.0182
2 -3.813e+00 1.046e+01 -0.36 0.7154
1 * 1 5.705e+02 9.044e+02 0.63 0.5282
2 * 1 1.951e+03 5.382e+02 3.62 0.0003
1 * 2 -3.682e+02 1.108e+03 -0.33 0.7395
2 * 2 1.417e+03 6.378e+02 2.22 0.0263
1 * 1 2.908e+03 8.002e+02 3.63 0.0003
2 * 1 7.887e+02 5.220e+02 1.51 0.1308
1 * 2 -1.919e+03 6.566e+02 -2.92 0.0035
2 * 2 4.938e+02 4.362e+02 1.13 0.2576
1 * 1 7.819e+03 1.407e+03 5.56 0.0000
2 * 1 4.536e+03 1.699e+03 2.67 0.0076
1 * 2 3.675e+03 1.068e+03 3.44 0.0006
2 * 2 2.267e+03 1.445e+03 1.57 0.1167
1 * 1 * 1 -2.378e+05 8.572e+04 -2.77 0.0055
2 * 1 * 1 2.085e+05 5.229e+04 3.99 0.0001
1 * 2 * 1 -2.057e+05 1.082e+05 -1.90 0.0573
2 * 2 * 1 1.260e+05 6.127e+04 2.06 0.0397
1 * 1 * 2 -1.279e+05 6.493e+04 -1.97 0.0488
2 * 1 * 2 1.356e+05 4.149e+04 3.27 0.0011
1 * 2 * 2 -1.554e+05 9.197e+04 -1.69 0.0911
2 * 2 * 2 9.515e+04 5.030e+04 1.89 0.0585
[1] "lrm gof"
Sum of squared errors Expected value|H0 SD

4.839148e+02 4.791093e+02 9.819274e-01
Z P

4.893871e+00 9.887179e-07
Analysis of Deviance Table
Model 1: struct ~ freq + robust + mbits
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Model 2: struct ~ freq * robust * mbits
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 4996 3440.4
2 4992 3118.1 4 322.3 1.714e-68
Analysis of Deviance Table
Model 1: struct ~ freq + robust + mbits
Model 2: struct ~ poly(freq, 2) + poly(robust, 2) + poly(mbits, 2)

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 4996 3440.4
2 4993 3371.9 3 68.5 8.962e-15
Analysis of Deviance Table
Model 1: struct ~ freq + robust + mbits
Model 2: struct ~ poly(freq, 2) * poly(robust, 2) * poly(mbits, 2)

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 4996 3440.4
2 4973 3024.8 23 415.5 1.119e-73
Analysis of Deviance Table
Model 1: struct ~ freq * robust * mbits
Model 2: struct ~ poly(freq, 2) + poly(robust, 2) + poly(mbits, 2)

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 4992 3118.1
2 4993 3371.9 -1 -253.8 3.943e-57
Analysis of Deviance Table
Model 1: struct ~ freq * robust * mbits
Model 2: struct ~ poly(freq, 2) * poly(robust, 2) * poly(mbits, 2)

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 4992 3118.13
2 4973 3024.84 19 93.29 8.635e-12
Analysis of Deviance Table
Model 1: struct ~ poly(freq, 2) + poly(robust, 2) + poly(mbits, 2)
Model 2: struct ~ poly(freq, 2) * poly(robust, 2) * poly(mbits, 2)

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 4993 3371.9
2 4973 3024.8 20 347.0 1.813e-61
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Final Logistic Regression Models

The final model for a sample size of 5000, combined scoring parameters, and the response threshold

of 25% (1 of 4 structural alignments) is as follows, wherelSI1 is the log odds of structural inclusion:

lSI1 = −7.418 + (4.374 ∗ frequncy) + (3.919 ∗ robustness) + (1.816 ∗ maxbits) (E.0.1)

The final model for a sample size of 5000, combined scoring parameters, and the response threshold

of 50% (two of four structural alignments) is as follows, where lSI2 is the log odds of structural

inclusion:

lSI2 = −9.806 + (4.720 ∗ frequency) + (5.905 ∗ robustness) + (2.068 ∗ maxbits) (E.0.2)

The final model for a sample size of 5000, combined scoring parameters, and the response threshold

of 75% (three of four structural alignments) is as follows, wherelSI3 is the log odds of structural

inclusion:

lSI3 = −9.857 + (4.692 ∗ frequency) + (5.594 ∗ robustness) + (2.337 ∗ maxbits) (E.0.3)
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The final model for a sample size of 5000, combined scoring parameters, and the response threshold

of 100% (four of four structural alignments) is as follows, wherelSI4 is the log odds of structural

inclusion:

lSI4 = −11.337 + (4.829 ∗ frequency) + (6.152 ∗ robustness) + (3.210 ∗ maxbits) (E.0.4)

The complete R output describing the models and their statistics follows.

TRAINING DIR: train.family.logistic
TEST DIR: test.family.logistic

=========================================================

SAMPLE size: 5000 alg id: 95 scr id: 95

[1] "Formula used: "
struct ~ freq + robust + mbits

[1] "threshold: 0.25"

[1] "glm print:"
Call: glm(formula = formula, family = binomial, data = trainSet)
Coefficients:
(Intercept) freq robust mbits

-7.418 4.374 3.919 1.816
Degrees of Freedom: 4999 Total (i.e. Null); 4996 Residual
Null Deviance: 6375
Residual Deviance: 3715 AIC: 3723

[1] "glm summary:"
Call:
glm(formula = formula, family = binomial, data = trainSet)
Deviance Residuals:

Min 1Q Median 3Q Max
-1.9683 -0.4220 -0.3045 0.6491 2.7682
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -7.4178 1.8625 -3.983 6.81e-05 ***
freq 4.3744 0.1199 36.482 < 2e-16 ***
robust 3.9190 1.9566 2.003 0.0452 *
mbits 1.8158 0.1721 10.551 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 6375.3 on 4999 degrees of freedom
Residual deviance: 3714.7 on 4996 degrees of freedom
AIC: 3722.7
Number of Fisher Scoring iterations: 5

[1] "glm anova:"
Analysis of Deviance Table
Model: binomial, link: logit
Response: struct
Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 4999 6375.3
freq 1 2526.9 4998 3848.3 0.0
robust 1 7.5 4997 3840.8 6.002e-03
mbits 1 126.1 4996 3714.7 2.991e-29

[1] "plot glm"

[1] "termplot"
2.5 % 97.5 %

(Intercept) -11.06909553 -3.766462
freq 4.13931518 4.609448
robust 0.08313872 7.754844
mbits 1.47839592 2.153122
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[1] "mikes gof"
Sum of squared errors Expected value|H0 SD

5.657670e+02 5.731394e+02 1.847317e+00
Z P

-3.990839e+00 6.583988e-05

[1] "lrm print"
Logistic Regression Model
lrm(formula = formula, data = trainSet, x = TRUE, y = TRUE, maxit = 20)
Frequencies of Responses

0 1
3326 1674

Obs Max Deriv Model L.R. d.f. P C Dxy
5000 8e-14 2660.52 3 0 0.898 0.795

Gamma Tau-a R2 Brier
0.798 0.354 0.573 0.113

Coef S.E. Wald Z P
Intercept -7.418 1.8625 -3.98 0.0001
freq 4.374 0.1199 36.48 0.0000
robust 3.919 1.9566 2.00 0.0452
mbits 1.816 0.1721 10.55 0.0000

[1] "lrm anova"
Wald Statistics Response: struct

Factor Chi-Square d.f. P
freq 1330.90 1 <.0001
robust 4.01 1 0.0452
mbits 111.33 1 <.0001
TOTAL 1554.34 3 <.0001

[1] "lrm gof"
Sum of squared errors Expected value|H0 SD

5.657670e+02 5.731394e+02 1.847317e+00
Z P

-3.990839e+00 6.583990e-05

[1] "threshold: 0.5"

[1] "glm print:"
Call: glm(formula = formula, family = binomial, data = trainSet)
Coefficients:
(Intercept) freq robust mbits

-9.806 4.720 5.905 2.068
Degrees of Freedom: 4999 Total (i.e. Null); 4996 Residual
Null Deviance: 6237
Residual Deviance: 3440 AIC: 3448

[1] "glm summary:"
Call:
glm(formula = formula, family = binomial, data = trainSet)
Deviance Residuals:

Min 1Q Median 3Q Max
-2.0689 -0.3647 -0.2583 0.5933 2.9445
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -9.8063 1.9190 -5.110 3.22e-07 ***
freq 4.7204 0.1334 35.382 < 2e-16 ***
robust 5.9045 2.0161 2.929 0.00340 **
mbits 2.0680 0.1848 11.188 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 6236.6 on 4999 degrees of freedom
Residual deviance: 3440.4 on 4996 degrees of freedom
AIC: 3448.4
Number of Fisher Scoring iterations: 5

[1] "glm anova:"
Analysis of Deviance Table
Model: binomial, link: logit
Response: struct
Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 4999 6236.6
freq 1 2634.8 4998 3601.9 0.0
robust 1 15.7 4997 3586.1 7.345e-05
mbits 1 145.8 4996 3440.4 1.460e-33

[1] "plot glm"

[1] "termplot"
2.5 % 97.5 %

(Intercept) -13.568352 -6.044214
freq 4.458888 4.981989
robust 1.952034 9.856979
mbits 1.705647 2.430403

[1] "mikes gof"
Sum of squared errors Expected value|H0 SD

5.199493e+02 5.325435e+02 2.005560e+00
Z P

-6.279625e+00 3.393903e-10
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[1] "lrm print"
Logistic Regression Model
lrm(formula = formula, data = trainSet, x = TRUE, y = TRUE, maxit = 20)
Frequencies of Responses

0 1
3421 1579

Obs Max Deriv Model L.R. d.f. P C Dxy
5000 5e-11 2796.25 3 0 0.908 0.817

Gamma Tau-a R2 Brier
0.819 0.353 0.601 0.104

Coef S.E. Wald Z P
Intercept -9.806 1.9191 -5.11 0.0000
freq 4.720 0.1334 35.38 0.0000
robust 5.905 2.0162 2.93 0.0034
mbits 2.068 0.1849 11.19 0.0000

[1] "lrm anova"
Wald Statistics Response: struct

Factor Chi-Square d.f. P
freq 1251.44 1 <.0001
robust 8.58 1 0.0034
mbits 125.14 1 <.0001
TOTAL 1456.58 3 <.0001

[1] "lrm gof"
Sum of squared errors Expected value|H0 SD

5.199493e+02 5.325435e+02 2.005560e+00
Z P

-6.279619e+00 3.394047e-10

[1] "threshold: 0.75"

[1] "glm print:"
Call: glm(formula = formula, family = binomial, data = trainSet)
Coefficients:
(Intercept) freq robust mbits

-9.857 4.692 5.594 2.337
Degrees of Freedom: 4999 Total (i.e. Null); 4996 Residual
Null Deviance: 5948
Residual Deviance: 3416 AIC: 3424

[1] "glm summary:"
Call:
glm(formula = formula, family = binomial, data = trainSet)
Deviance Residuals:

Min 1Q Median 3Q Max
-1.9967 -0.3533 -0.2378 0.5003 3.0664
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -9.8572 1.9130 -5.153 2.57e-07 ***
freq 4.6921 0.1416 33.128 < 2e-16 ***
robust 5.5935 2.0126 2.779 0.00545 **
mbits 2.3367 0.1851 12.624 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 5948.3 on 4999 degrees of freedom
Residual deviance: 3416.3 on 4996 degrees of freedom
AIC: 3424.3
Number of Fisher Scoring iterations: 6

[1] "glm anova:"
Analysis of Deviance Table
Model: binomial, link: logit
Response: struct
Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 4999 5948.3
freq 1 2323.6 4998 3624.7 0.0
robust 1 18.4 4997 3606.3 1.763e-05
mbits 1 190.0 4996 3416.3 3.203e-43

[1] "plot glm"

[1] "termplot"
2.5 % 97.5 %

(Intercept) -13.607566 -6.106786
freq 4.414464 4.969798
robust 1.648002 9.539068
mbits 1.973856 2.699632

[1] "mikes gof"
Sum of squared errors Expected value|H0 SD

522.084794 540.451531 2.048829
Z P

-8.964505 0.000000

[1] "lrm print"
Logistic Regression Model
lrm(formula = formula, data = trainSet, x = TRUE, y = TRUE, maxit = 20)
Frequencies of Responses
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0 1
3590 1410

Obs Max Deriv Model L.R. d.f. P C Dxy
5000 6e-10 2532 3 0 0.901 0.801

Gamma Tau-a R2 Brier
0.803 0.325 0.571 0.104

Coef S.E. Wald Z P
Intercept -9.857 1.9130 -5.15 0.0000
freq 4.692 0.1416 33.13 0.0000
robust 5.594 2.0126 2.78 0.0054
mbits 2.337 0.1851 12.62 0.0000

[1] "lrm anova"
Wald Statistics Response: struct

Factor Chi-Square d.f. P
freq 1097.48 1 <.0001
robust 7.72 1 0.0054
mbits 159.36 1 <.0001
TOTAL 1258.67 3 <.0001

[1] "lrm gof"
Sum of squared errors Expected value|H0 SD

522.084794 540.451531 2.048829
Z P

-8.964505 0.000000

[1] "threshold: 1"

[1] "glm print:"
Call: glm(formula = formula, family = binomial, data = trainSet)
Coefficients:
(Intercept) freq robust mbits

-11.337 4.829 6.152 3.210
Degrees of Freedom: 4999 Total (i.e. Null); 4996 Residual
Null Deviance: 5205
Residual Deviance: 3093 AIC: 3101

[1] "glm summary:"
Call:
glm(formula = formula, family = binomial, data = trainSet)
Deviance Residuals:

Min 1Q Median 3Q Max
-2.51254 -0.34266 -0.18743 -0.08881 3.26720
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -11.3374 2.0334 -5.576 2.47e-08 ***
freq 4.8294 0.1700 28.415 < 2e-16 ***
robust 6.1516 2.1443 2.869 0.00412 **
mbits 3.2095 0.1965 16.332 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 5205.1 on 4999 degrees of freedom
Residual deviance: 3092.7 on 4996 degrees of freedom
AIC: 3100.7
Number of Fisher Scoring iterations: 6

[1] "glm anova:"
Analysis of Deviance Table
Model: binomial, link: logit
Response: struct
Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 4999 5205.1
freq 1 1737.6 4998 3467.4 0.0
robust 1 32.2 4997 3435.2 1.364e-08
mbits 1 342.5 4996 3092.7 1.858e-76

[1] "plot glm"

[1] "termplot"
2.5 % 97.5 %

(Intercept) -15.323762 -7.351127
freq 4.496200 5.162586
robust 1.947861 10.355392
mbits 2.824279 3.594784

[1] "mikes gof"
Sum of squared errors Expected value|H0 SD

470.28502 494.90148 2.19845
Z P

-11.19719 0.00000

[1] "lrm print"
Logistic Regression Model
lrm(formula = formula, data = trainSet, x = TRUE, y = TRUE, maxit = 20)
Frequencies of Responses

0 1
3925 1075

Obs Max Deriv Model L.R. d.f. P C Dxy
5000 1e-07 2112.34 3 0 0.895 0.79

Gamma Tau-a R2 Brier
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0.793 0.267 0.533 0.094
Coef S.E. Wald Z P

Intercept -11.337 2.0334 -5.58 0.0000
freq 4.829 0.1700 28.41 0.0000
robust 6.152 2.1443 2.87 0.0041
mbits 3.210 0.1965 16.33 0.0000

[1] "lrm anova"
Wald Statistics Response: struct

Factor Chi-Square d.f. P
freq 807.36 1 <.0001
robust 8.23 1 0.0041
mbits 266.74 1 <.0001
TOTAL 941.56 3 <.0001

[1] "lrm gof"
Sum of squared errors Expected value|H0 SD

470.28502 494.90148 2.19845
Z P

-11.19719 0.00000


