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Abstract

This dissertation describes my research into supportinguie of near-optimal protein sequence
alignments by biologists. The research involves contidimst to bioinformatics (investigating the
relationship of near-optimal alignments to structuragafhents) and cognitive systems engineering
(developing a near-optimal sequence alignment solutianespnalysis system). The bioinformatics
contributions show that the variation between structurghenents compares favorably with that of
near-optimal alignments. The results indicate that amadynear-optimal alignments can be used
for developing higher quality homology models for sequaenaéthout known tertiary structure.
This research further explores the relationship betwerrmttsiral and near-optimal alignments by
developing a logistic regression model that predicts wdreth not aligned pairs of amino acids in
a set of near-optimal alignments are likely to be found indtiral alignments. This work adds
to cognitive systems engineering by demonstrating an tfeesystem for supporting biologists
in the exploration of large sets of near-optimal alignmenthis support comes in the form of
alignment visualization techniques and facilities for atxinitiative interaction. Two visualizations
were created, an animated pairwise alignment and a zoorpattiggraph, which provide alternative
perspectives on sets of near-optimal alignments. A mirédhxiive interaction scenario is created
by allowing users to dynamically edit and adjust alignmewnilsich creates a feedback loop. This
provides further insight into the alignment generatioroatyms. The visualization techniques take
advantage of the biological insights developed in the festien of this research to further increase
the usefulness of the system. Two case studies demonsteaitility of the near-optimal alignment
solution space analysis system. One case study describeséiof our visualization and analysis

system to confirm the homology of two distantly related gritel acritin and Dermcidin. The sec-
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ond case study describes how the visualization optionstifitj, and mixed-initiative features of the

system facilitated the development of @(n) space near-optimal alignment generation algorithm.
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Chapter 1

Introduction

This research involves the study of near-optimal protegqueace alignments and aims to support
biologists using the output of imperfect models. The mdidrafor this research stems from the
reality that mathematical models fail to account for alllvé tvariables, parameter values and con-
straints inherent in the phenomena they attempt to model.sirhplifying assumptions inherent in
the sequence alignment model can lead to results that averéet from a biological perspective.
Therefore, the goal of this research is to better underskawd the sequence alignment model,

however flawed, can be used to better understand a protgimadints.

Proteins are responsible for most functions in living ofgars. As a consequence, biologists are
frequently interested in determining the function of unknagproteins isolated during experimen-
tation. One way to do this is to compare unknown proteins Witbwn ones. If two proteins are
sufficiently similar, then it is likely that the two proteirsse homologous (meaning they share a
common ancestor) and therefore function in a similar waye gieater the similarity between the
proteins is, the more recent their common ancestor and @y By understanding this relation-

ship, scientists can direct further research into the uwknoroteins.

Proteins consist of long chains of amino acid residues tidtihto 3-dimensional structures. The
linear chain of amino acids is called the protein’s sequeancgrimary structure and is the basis
for most bioinformatics analysis. Sequence alignment le& lused for more than 30 years as a
fundamental tool in biology. A sequence alignment is simgutyattempt to match the characters

representing one sequence with the corresponding cheganta second sequence. The general
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goal of alignment is to understand how similar or dissimdae sequence is from the other. The
most common usage is to detect homologous sequences inbaskaiaf DNA or protein sequences
[1][2]. Once homology is established with a known sequenterences can be made about the
structure, function, and significant residues of the unkmeequence. However, these inferences
are often critically dependent upon the quality of the aligmt between the two sequences. The
usual gold standard by which sequence alignments are agdssghe structural alignment between
the two proteins. This is a reasonable standard, since the-tlimensional structure contains more
information than the one-dimensional sequence, and imatély required for a full description of
a protein’s function. Conversely, sequence based aligts@@a used to create homology models of

protein families when only incomplete structural inforinatis available.

Alignments in general, and protein sequence alignmentsaiticolar, are entirely abstract con-
structions. There is no natural process by which two diffeprotein sequences align themselves.
Alignment algorithms are mathematical models used to arduoderstanding of the relationships
between different sequences. This means there is no “raghorrect” or “optimal” alignmentas
there is no absolute standard by which to evaluate an alignireom a mathematical perspective,
this makes the problem of sequence alignment ill-posed T8js does not, however, impede the
biologist from extracting useful information from a refanfated model. By slightly changing the
problem statement (such as treating amino acid positiohieweére independent, allowing a con-
stant rate of evolution), we can have a well posed problendipig models that can be optimized
[4][5]. To do so, a trade-off has been made with the implickreowledgment that an optimal
solution to the well posed model is still only an approxiroatof what is necessary for the analysis.
While this model can be optimized according to a particulatrin, there is still no algorithmic way
to determine whether an alignment is biologically sensif@lely a scientist with a deep understand-
ing of the domain can accurately determine whether a p#ati@ignment makes sense. We do not
view this lack of standard as a problem, because the goahoksee alignment is not to produce a

solution, but rather to develop insight and understandirthesequences involved.

Given this incomplete model of optimal sequence based ithgas, it seems reasonable to expect

that the algorithms will create alignments that make nodgjiwlal sense in certain circumstances.



Chapter 1. Introduction 17

Optimal sequence based algorithms are known to misaligfiukestional residue's[6]. In these sit-
uations, the alignment model has insufficient informatioprtoperly align the sequences. Missing
is the knowledge (generally derived through physical expents, possibly including the identifi-
cation of the 3-dimensional structures of the proteins) plaaticular residues must align. Despite
these failures, the many successful alignmentsategproduced lead us to believe that the incorrect
alignments are close to being correct. That is, small chemgéhe alignment would improve the
alignment from a biological perspective. Therefore, inesaghere misalignments occur, we be-
lieve it is reasonable to search in a neighborhood surrognitiie optimal solution (the near-optimal
solution space) for a solution that does not share the saineefa Near-optimal alignments are
sequence based alignments with scores that fall within tioethreshold of the algorithmically

optimal score [7][8][9][10].

The goal of this work is to enhance our understanding of praequence alignments through
the use of near-optimal alignments. The hypothesis exglarehis dissertation is that a set of
near-optimal solutions contains more information thamalsi algorithmically optimal alignment.
Specifically, we hypothesize that near-optimal soluticas loe used to further our understanding of
3-dimensional structural characteristics of proteinshait having the actual 3-dimensional struc-
ture. In addition, we explore different visualization arahtrol techniques that facilitate viewing

and comprehension of sets of near-optimal alignments.

The dissertation contains four chapters that constitigectimtribution to Bioinformatics and Sys-
tems Engineering followed by a concluding chapter. Chaptdescribes the comparison of sets
of near-optimal alignments with alternative structurddjiainents. This research demonstrates that
sets of near-optimal alignments compare favorably to siratalignments. The results described
in Chapter 2 motivate the research in Chapter 3. In Chaptee 8levelop a probabilistic model
that predicts whether pairs of amino acids can be expectatigio in structural alignments based
on metrics derived from sets of near-optimal alignmentsag@ér 4 describes the system developed
for researchers to generate, visualize, and study neanaipdlignments. We describe the novel vi-

sualization techniques and algorithms developed to fatdlithis study. Chapter 5 relates two case

! Residue is short for amino acid residue.
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studies that demonstrate how the visualization softwasehie®n successfully used in real-world

scientific discovery. Finally, Chapter 6 concludes theatisgion.

This research enhances our understanding of the relaipbstween sequence based and structural
alignments and provides guidance that aids in the exptoratnd understanding of near-optimal
alignments. The research manifests itself in a system tipdasts the display and exploration of

near-optimal solution space.

A subset of the research presented in Chapter 4 and 5 has bieeshpd in [11] and another paper
is in press [12]. Another manuscript describing the work afters 2 and 3 is in the final stages of

preparation.

1.1. Background and Significance

1.1.1. The Importance of Sequence Based Alignments in ModeBiology

Proteins are the building blocks of life. Ranging from enegnthat aid in digestion, to hemoglobin
which transports oxygen in the blood, to the various stmattproteins that comprise our muscles
and bone, proteins are central to almost all aspects ofdyol®rotein molecules consist of spe-
cific sequences of amino acids which fold into 3-dimensisiapes that determine the function
of the proteins. The twenty amino acids have a variety of ¢ébanproperties (e.g., acidic/basic,
positive/negative charge, hydrophilic/hydrophobic)ttmghen combined, allow for the vast array of
functions that proteins perform. The sequence of amincsasiceferred to as the primary structure
of a protein while the 3-dimensional shape the sequences fald is referred to as the tertiary
structuré [13]. The primary structure of a protein is relatively cheayl easy to find while finding

the tertiary structure is substantially more expensive tand consuming. This is reflected in the

number of sequences available compared to the number efpsituctures available. There are far

2 Secondary structure is the local packing of amino acidsraaog to how hydrogen bonds form between the CO
and NH of different amino acid residues. Secondary strestare eithealpha helicesvhere hydrogen bonds between
every fourth residue form helical shapeshata sheetsvhere hydrogen bonds form between adjacent strands ageatin
sheet-like shapes. Quaternary structure is when two or separate strands of amino acids fold together into a single
structure.
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fewer known protein structures (28,648 structures as oeBwer 7, 2004 in the Protein Data Bank
[14]) than there are protein sequences (1,917,944 engief@ecember 4, 2004 in the PIR-NREF
[Protein Information Resource Non-redundant Protein Reiee] database [15]). Contrast this with
20,533 structures and 976,519 sequences as of April 1, 2008 ahould be clear why we expect
this trend to continue into the foreseeable future. Giveés difference, the ability to predict the

tertiary structure of a protein (and thus function) basel¢y on a sequence of amino acids is very
desirable. This, however, is an extremely difficult probleMvhile it is believed that sequence
implies structure, we do not have a good understanding aoffsghanism that proteins use to fold
into their 3-dimensional structure [16]. This means we arteafle to make accurate predictions of
structure or function. Many efforts are underway to underdtprotein folding and structure pre-
diction [17]. Many would argue that accurately predictinigisture and function from a sequence

of amino acids is the holy grail of modern biology.

While we may not yet be able to predict structure from segegtinere is much to be learned from
studying protein sequences. The fundamental computétionhfor analyzing sequences is the
sequence alignment [18]. Alignments are a way of comparimgsequence to another and making
inferences about unknown proteins. Among other activitieey are used for establishing rela-
tionships between sequences [19], establishing homoR@jyand for sequence database searching

[1][2]. Sequence alignment is therefore a fundamentaligin modern biological research.

While finding protein structures is a costly process, we dovkthe structures of several thousand
important proteins. If we do happen to have the structurds/ofproteins being aligned, then it is
possible to create structural alignment Structural alignment algorithms attempt to account fer th
3-dimensional position of each amino acid when the aligrtnieebeing generated [21]. Because
structural alignments account for more information abbet proteins, they are thought to be su-
perior to sequence based alignments. Aside from the relatavailability of protein structures,
the largest source of difficulty with structural alignmelgaithms is that the additional informa-
tion available for constructing the alignment increasesdimensionality of the problem such that
heuristic algorithms are required to produce alignmenitss ieans that there are several alternative

structural alignment algorithms that each produce diffeadignments.
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Given the expense of solving structures directly and oubilityg to predict structure, the current
approach taken by the various high-throughput structieabgics projects is to solve as few struc-
tures as possible while ensuring that a homology model dicseriit quality can be constructed for
every sequence. Current methods allow high-quality mottelse produced when the sequence
identity® is ~40% or higher, but statistically significanE() < 10~2) homology can be detected
below 20% sequence identity, which leaves a large numben@ivk homologs for which reliable
models cannot currently be built. The biggest hurdle fasingcture predictors in this range of se-
guence similarity is the accuracy of the alignment. Aftexkpig the proper template molecule, the
next most important step in producing an accurate modelrisrg¢ing a biologically correct align-
ment between the template and sequence to be modeled. $adespread agreement that most of
the modeling efforts that fail in the 20-40% identity rangé €élue to poor alignment quality (align-
ments between sequences with >40% identity generally spored closely with the structure-based
alignment). Thus much effort has been spent attempting poawe alignment accuracy in this area

of sequence similarity space.

This research uses sequence based alignments of protdiefptas further our understanding of
the relationship between sequence based and structugafrednts. This knowledge is a small step

in the effort to predict or understand protein structuréhaitt knowledge of the structure.

1.1.2. Humans, Visualization, and Automation

The goal of this research, from a cognitive systems engimggrerspective, is to study ways in
which to make imperfect system models more useful. Thisarebeinvolves the integration of

automation, information visualization, and human judgtnen

We know that algorithmically optimal sequence alignmemisistimes fail to align key functional
residues [6]. Two complementary approaches address thidgon. One involves improving the
alignment algorithm and many such attempts have been maitte varying degrees of success
[20][22]. The alternative explored here is the support ombaa expertise when generating and

3 The percentage of amino acids that are aligned with iddraitino acids.
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interpreting results. Our approach involves presentiegésearcher with a set of alternative align-
ments rather than a single “optimal” alignment. It is impoittto emphasize the point that we are
not seeking one “correct” alignment, but rather using atgmiuspace to enhance our understanding
of the relationship between two sequences. The system wadoged is therefore not precisely

a decision support system, although it shares many chastict® that a decision support system

might have.

Much of this research involvagsformation visualizationwhich should be distinguished frosti-
entific visualization Card, et al. [23] defines scientific visualization as annaftieto represent a
physical system on a display medium. In contrast, inforamatiisualization attempts to create a
visual representation @bstractdata with no natural or underlying physical form. The caoahi
example of information visualization is the simple XY sealot. While biological sequences have
clear physical representations, alignments have no pliyasi@logs and thus must be considered an

exercise in information visualization.

As a way of presenting alternative alignments, this reseaxplores the use of animation. The use
of animation is common in scientific visualization as thechieeexpress movement and change over
time is necessary for accurate representations of reativegdtems. There seems to be relatively
little use of animation in information visualization. Astime representation of real systems, anima-
tion is used to assist users in maintaining context awasesethe state of an abstract representation
changes [24]. Perhaps the most common use of animation thabdata is in the animation of
computer science algorithms [25]. However, even in thek@tons the animation of the quick
sort algorithm is not strictly information visualizatios the task of ordering something by size has
many clear physical analogs. Even the visualization of eegel alignments has some connection

to the physical world, because all biological sequences paysical shapes.

While there is no literature directly related to the anirmatof near-optimal alignments, there is
substantial support for the use of animation. Adding a tilmeedision to representations of physical
systems can help comprehension and communication [26§ Mtell understood that vision is a
high bandwidth sensory organ [27]. However, the use of shape, and color limit the amount

of information that can be displayed on one computer scregme use of motion can increase
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the bandwidth of one screen [28]. One example is the visat#diz of causal relationships [29].

Imagine one circle on a screen moving until it intersecthwitsecond, stationary circle, the first
circle stopping and second circle moving in the same dwactiThe inference to be made is that
the first circle struck and therefore caused the seconcediocinove. Likewise, animation is used

to signal transitions from one state or phase to anothef3ag]

Of course, not everyone is convinced that animation is hel@pecifically, Tversky et al. claim

that animation does not facilitate learning [31]. The seur€their complaint is that most studies
that claim to compare the same data represented in stati@minthted graphics, in fact, show
two different sets of data. That is, the animation shows nuat@ than the static graphic does
and thus there is no way of determining if the improvementrinmated displays is the result of
the animation or the extra data present. Regardless, thene improvement in the amount of

information communicated, which supports the notion ofretion increasing bandwidth [28].

Closely related to information visualization is the art ifual data mining or visual data exploration.
Visual data mining attempts to couple human perceptuallibgees with data and computational

power to help induce useful models [32]. Beyond simply piow a visual representation of data,
visual data mining attempts to uncover patterns and relstips in data that otherwise would have
been obscured. Human perception is a powerful resourcéstpatticularly amenable in situations

where algorithms and computers have difficulty such as witlsynor non-homogeneous data or
when the consumers of data are not trained in the matherhatidastatistical methods necessary
to interpret certain models. The process of visual datarmgior exploration is usually construed to
have a three step process: first overview, second zoom am fitid finally detailed presentation

as needed [33]. Part of this research focuses on the useoofiafion visualization techniques that
exploit human pattern recognition capabilities to helpi@ymroblems in sequence alignment such

as misaligned residues.

One of the key difficulties with near-optimal sequence atignts is the large number of alternative
solutions produced. In contrast with visual data mining tiotion of exploring a solution space
seems somewhat less developed. One example is for airgarefmding software [34]. Like se-

guence alignment, the routing system described uses a dypangramming algorithm to generate



Chapter 1. Introduction 23

alternative solutions and, like our system, presents ttegraltives to a user. Another example is
the use of a browsing metaphor for comparing alternative @édnputer aided design) generated
estimations of hand drawn figures [35]. Other research l@bkssing visualizations and human
knowledge to assist in computationally hard problems byesting regions for search and helping
a computer out of local minima [36]. The common thread ine¢hefforts and with this research is
that in each case there is a large possible solution spakeisital representations that are amenable

to human interpretation.

The goal of all visualization efforts is to combine humangegtual capabilities with data and
computational power to produce outcomes that are greateitite sum of their parts. Joint cognitive
systems [34] reflect an approach to decision support systeatsouple human decision making
ability with the computational power of computers. Howeveis well known that automation is a
double edged sword. Computer automation can accomplisjghhat no human can hope to, yet
automation can adversely affect our situational awar¢Bekdull us into a sense of complacency
[38] and frequently annoy [39]. Rather than just a human st gicomputer making decisions,
joint cognitive systems are an attempt to balance the dtiergf humans and computers to create
more effective problem solving and decision making systeffe misalignment of key functional
residues in sequence alignment is an example where autoteetiniques fail in the bioinformatics
domain. We believe that with the introduction of human etiperby visualizing and generating
alternative alignments, we can develop a system that will beeate more biologically sensible

alignments.

Levels of computer automation are generally classified aakeganging from maximum automa-
tion where a computer does everything without any input frmmieedback to the human to no
automation where a human must make all decisions and pedfiractions [40]. Most decision

support systems are built around a particular model of aatimm and tend to stay within a given
level. Mixed-initiative systems are systems that allow rfaultiple levels of automation within a
single system [41]. This means that users can, at one peiyt,(or not) on a certain level of

automation yet can change that level as circumstances ademan idealized scenario allows a
human to offload work to an automated system when the humaao sy or pressured to properly

manage it. Other systems switch between user initiatedrescind automatic action depending on
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context and underlying plans available to the automati@j. [4 his system provides for various
levels of automation and the ability to switch between IgveSpecifically, users can edit their
own alignments and have the alignments evaluated usingathe sriteria as those generated using

automatic methods.

This work takes advantage of the coupling of overview anaitldtsplays, a topic that has been
studied in other domains as a way of increasing situationar@ness and facilitating navigation
[43][44]. Previous systems with such overview and detaipldiys are frequently discussed in the
context of decision support roles [45][46] or in terms oflesing [47]. While our system is neither
a decision support tool nor a browser, evidence suggedtthnaoupling of overview and detailed
information, whether by separate panes [47] or zooming, [8Bbw improved performance over

single view, static displays.

The integration of other features into these differentespntations can improve the overall system.
Alignment Viewer [49][50], a tool for viewing the results @NA sequence database searches,
uses animation, filtering, zooming, and icons to displagdanumbers of search results and to
communicate different information about alignments. Baraple, their use of filtering can dy-

namically constrain the results presented to the user.r thaib metaphor accomplishes what our
similarity/identity highlight does and it is easy to see hthe comb metaphor could be used to
communicate conserved regions or robustness. This pmwdelence that our protein sequence
alignment tool may also benefit from the integration of thiesstures. While our system shares
many of the same techniques used by the Alignment Viewedneains (DNA search results vs.

protein sequence alignments) are different enough thakatdiomparison is not possible.

1.2. Prior Results in Near-optimal Sequence Alignment

1.2.1. Near-optimal Alignment Generation

Sequence based alignment algorithms are variations otesh@ath dynamic programming algo-

rithms. The models introduced by Needleman and Wunsch fbrefined by Smith and Waterman
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[4] view the alignment of two sequences as a set of operapentrmed on one sequence that
transform it into a second sequence. The operationsnateh(the amino acids are the same and
thus make no changeyubstituteone amino acid for anothemsert a new amino acid into the
sequence, andeletean amino acid from the sequence. Each operation is givenra acd then all
operations are summed to produce an overall alignment.sGmtimal solutions for thisnodelcan

be found. In general, sequence alignment algorithms tleatyme one optimal solution ae(n?)

in time and, as traditionally implemented, abén?) in space, although modern implementations

[51] areO(n) in space.

Depending on whether the alignment is local or global, thgnatent score is referred to as the
Smith-Waterman scorer the Needleman-Wunsch scomespectively. Aglobal alignmentis an
alignment that aligns the entirety of two sequence$ocal alignments the alignment of two high
scoring subsequences of the original sequences. The smomeatching and substituting amino
acids are calculated according to predefined transitioriregmnatrices [52][53] which are empiri-
cally derived from manually created alignments of well stddoroteins. The matrices contain the
log-odds that one amino acid will evolve into another. Itises and deletions are often referred to
asindelsbecause an insertion in one sequence is a deletion fromhbeand vice versa. Indels are
represented in alignments as gaps (usually a -’ charaici@ne or the other sequence so we there-
fore talk abougap penaltiesvhen referring to how insertions and deletions are accaoliiaiein an
alignment score. Gap penalties are calculated accordiag #ifine function wheréscore) = (gap
creation penalty) + (gap extension penalty) * (number of gJaMore complicated functions have
been proposed [22], but affine penalties are both easy tastade and computationally tractable.
The combination of scoring matrix and gap penalties arenedeto as the scoring parameters for

an alignment.

The extent to which two sequences align is measured in tweswaye first measure is percent
identity (also referred to as sequence identity), whichésriumber of amino acids in the alignment
that align with an identical amino acid in the other sequaticigled by the length of the alignment.

Despite being intuitive, percent identity is not statigli rigorous. For this, we have the expectation
value of the alignment. This is the expectation that an afignt of this quality can be expected to be

found in a given database of protein sequences [54]. Exji@ttia calculated as part of a database
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search [2][1] and expectation values are generally predentterms of the database used to do the

search.

Standard sequence alignment algorithms return only oreitdgnically optimal solution. This is
often a misleading result because in most alignments threrenaltiple alignments with the same
optimal score. For this reason and because algorithmicgitymal alignments are known to be
incorrect in certain cases (i.e. functional residues righall), people have proposed exploring the
near-optimal solution space [10]. Near-optimal alignmgameration algorithms have been well
understood for some time. Waterman and Byers developedegargl algorithm for enumerating
all alignments within a certain distance of optimal [7]. Tdifficulty with using all near-optimal
alignments is that there are so many of them. Even sequehcesdest length and similarity can
produce many millions of alignments within a neighborhoto$e to optimal. To accommodate this,
Zuker proposed an algorithm based on suboptimal pointsffirfOyenerating a diverse sample of
near-optimal solutions [8]. This algorithm is based on hisknin RNA folding [55]. Shortly there-
after, Sagi and Sternberg proposed another algorithm foergéing a sample of alignments with
the goal to produce alignments that are different from oratheer [56] using a method similar to
that of Waterman and Eggert [57]. During the traceback pbésiee algorithm, the Sagi-Sternberg
method penalizes any eddassed so that on the next iteration, the alignment is lessylikereuse
the edges already part of an alignment. These methods pradumaples substantially smaller than

Waterman-Byers would generate, usually anywhere from ob@mdozen to several hundred.

1.2.2. Near-optimal Alignment Analysis

The use and analysis of near-optimal sequence alignmestdetailed in a survey paper by Vingron
in 1996. The primary use of near-optimal alignments has be@ssess the reliability of different
regions of an alignment [10]. Vingron and Argos introduckd hotion of robustness [58], which
is a measure for each edge in an alignment. The robustnessedie is the difference between an

optimal alignment that includes that edge and the bestrakgm that does not include that edge. The

4 In this document, we refer to a pair of aligned amino acidsrasdge. This terminology results from considering
a set of alignments as a directed, acyclic path graph [9].hEawino acid aligned with another amino acid or a gap
represents one edge in the path graph. A single alignmeepissented as one path through the path graph. The arrows
in Figure 1.3 point to one edge that represents the alignofaht two amino acids at the opposite ends of the arrows.
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greater the difference, the more robust a particular edgedause the more necessary that edge is to
produce a high alignment score. Mevissen and Vingron intced a relatively fast§(n?)) method

for calculating robustness [59]. Their paper discussesuiecof robustness as a reliability index.
They show that alignment edges with high robustness havghehprobability of being correctly
aligned according to a single structural alignment. Whikking use of near-optimal techniques,

their methods are only ever applied to single algorithniyoaptimal alignments.

Marchler-Bauer et al. [60] performed an analysis that caegp#he alignment of protein domains
in the SMART [61] and PFAM [62] databasewith VAST[63] alignments. Their conclusion is that
sequence based and structural algorithms compare fayonathl only a few common problems.
Structural flexibilit was shown to cause structural alignments to fail for entinmans, but their
research does not show evidence of small failures, thah@ifunal sites misaligning. Their research
provides further evidence that regions of low sequencetityeare difficult for sequence based

alignments to manage.

1.2.3. Near-optimal Alignment Visualization

Visualizations of alignments can aid biologists when itngeging alignments and relationships
between sequences. Prior to this work, there were two aligenways of viewing alignments: the

pairwise alignment and the path graph.

1.2.3.1. Pairwise Alignments

A pairwise alignment displays in detail one alignment of tsemuences. It has been used by biol-
ogists for decades and is the de facto standard for disgjayinalignment. This method displays
one sequence in the row above the other such that the amidaadigap characters of the two
sequences align vertically. Depending on the software hadlisplay capabilities, details such

as how matching amino acids are highlighted vary betweetesgs Figure 1.1 is an example of

5 SMART and PFAM are alignment databases generated fromisif proteins using hidden Markov models.

5 For several reasons, protein structures are not complgtitic. First, any proteins naturally change shape, mean-
ing there is often not one fold shape. Second, the error armigaiity inherent in structure determination [13] means
structures can vary slightly.
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Figure 1.1. Text-based Pairwise Alignment

An optimal ASCII text pairwise alignment of proteins 1AUSAICBI Gl: 115725) and 1TGSZ
(NCBI GI: 230350). Created using BLOSUM50 -12/-2.

10 20 30 40 50
1AU8BA -————- IIGGRESRPHSRPYMAYLQIQSPAGQSRCGGFLJREDFVLTAAHCWGSNINVTL

1TGSZ VDDDDKIVGGYTCGANTVPY————QVSLNSGYHPCGGSL[NSQWVVSAAHCYKSGIQVRL
10 20 30 40 50

60 70 80 90 100 110
1AU8A GAHNIQRRENTQQHITARRAIRHPQYNQRTIQNDIMLLQLSRRVRRNRNVNPVALPRAQE

1TGSZ GEDNINVVEGNEQFISASKSIVHPSYNSNTLNNDIMLIKLKSAASLNSRVASISLPTSCA
60 70 80 90 100 110

120 130 140 150 160 170
1AU8BA GLRPGTLCTVAGWG——RVSMRRGTDTLREVQLRVQRDRQCLRIFGSYDPRRQICVGDRRE

1TGSZ S——AGTQCLISGWGNTKSSGTSYPDVLKCLKAPILSDSSCKSAYPGQITSNMFCAGYLEG
120 130 140 150 160 170

180 190 200 210 220
1AUSA RKAAFKGDSGGPLLCNNVAHGIVSYGKSSGVP--PEVFTRVSSFLPWIRTTMRS-

1TGSZ GKDSCQGDSGGPVVCSGKLQGIVSWGSGCAQKNKPGVYTKVCNYVSWIKQTIASN
180 190 200 210 220

a pairwise alignment generated by text-based softwarehisnparticular representation, the rows
representing the actual sequences begin with the sequanesnthe numbers above and below the
sequences indicate the positions of the amino acids witld@rséquences; a colon between the two
rows of amino acids indicates an identical match at thatijoosiand a single dot indicates a similar
match. In the boxed region in Figure 1.1, the amino acids sitjpms 30-34 (CGGFL) in sequence
1AUSBA (NCBI GI: 115725) align with the amino acids in posii® 32-36 (CGGSL) in sequence
1TGSZ (NCBI GI: 230350). In this subsequence, the aminosa@&G and L align identically,
while the F in 1AU8A is substituted for an S in 1TGSZ.

Pairwise alignments are very effective at communicatirg ltw-level detail of how individual
amino acids align. However, a pairwise alignment represenly one alignment. To display a set
of alternative alignments, a new pairwise alignment wowdddto be created for each alternative.

While it is trivial to generate a large number of pairwisegatnents, it becomes very difficult to



Chapter 1. Introduction 29

compare differences between alternatives and understencelationships captured by the set of

alignments.

1.2.3.2. Path Graphs

Pairwise alignments excel at providing a detailed view dfiviidual alignments, but they do not
provide an overview of the entire set of alignments in ongshat. An alternative visual represen-
tation to many text-based pairwise alignments is the ddtqdecribed by Zuker [8]. See Figure 1.2
for an example. A dot plot places one sequence along the Xaaxigthe second along the V. If a
pair of amino acids align, then a point is plotted at the iadiof the amino acids. The advantage of
a dot plot display, is that all near-optimal solution can eplayed in a single screen. One problem
with dot plots is that there are frequently too many pointdiszern any alignment shape. A variety
of refinements can fix this, for instance only plotting a pdfithree or more amino acids in a row
align. This approach helps, but detailed analysis of howviddal amino acids align is very difficult
with this representation. Likewise it is impossible to @isthow frequently certain sections of the

alignments occur within a set.

Naor and Brutlag [9] proposed an improvement to the dot plat instead of drawing rough points,
explicitly draws the alignment path graph. Figure 1.3 isxaneple of a static path graph generated
using Naor and Brutlag's approach. Path graphs are a repatie® of an entire set of near-optimal
alignments. Path graphs place one sequence along thefhtatiagis and the other along the vertical
axis. A diagonal line on the graph between the sequencdsdaai edge, indicates that the amino
acids at the respective indices align with one another. ficaredge indicates that a gap has been
inserted into the horizontal sequence and a horizontal eutieates that a gap has been inserted
into the vertical sequence. The resulting set of edges fadireated, acyclic graph where one path
through the graph (from top left to bottom right) represemte alignment. The benefit of the path
graph is that all possible alignments in a set can be disglayence providing an overview of a set
of alignments. Reliably aligned sections are also easyddseause those sections have relatively
few possible paths through those sections of the graphtfeedoottom right section of Figure 1.3),

while variable sections have many possible paths (e.gothé&eft section of Figure 1.3).
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Figure 1.2. Dot Plot

Dot plot of proteins 1AU8A (NCBI GI: 115725) and 1UVTH (NCBIIG2781297). 1AUS8A is
along the top edge and 1UVTH is along the left edge. A pointherplot indicates that one or more
amino acids align within a sliding window around that poifithe darker the point is, the higher
the score for that window is. It should be clear from this imaghere the amino acids aren't even
displayed, that anything other than general observatibostahe quality of the alignment is very
difficult. Created usinglotter with the BLOSUM®62 scoring matrix, K=0.141y = 0.319, and a
window size of 16 [64].
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Figure 1.3. Path Graph

An example of a path graph representation of a set of aligenalignments. A vertical edge rep-
resents a gap in the top sequence, a horizontal edge refgreseap in the left sequence and a
diagonal edge indicates a match. The section pointed to datiow indicates a section of the
alignment thought to be reliable as there is only one patbutyin the section. The upper left hand
section of the alignment shows multiple paths indicatireg there are several possible alignments
of the sequences around position 25 in each sequence. Wdihegpaphs provide substantially
more information than dot plots, it is still difficult to do @amo acid level comparisons because
the sequences are relatively far apart on the screen. Theaspdopartial path graph of multiple
near-optimal alignments of 1TGSZ (vertical, NCBI GI. 2303&and 1UVTH (horizontal, NCBI
Gl: 2781297) generated with the SUBOPT program [9] usindP#i250 matrix and a gap penalty
of -3 per residue.

20 43
RKSPQELLCGASLISDRWVLTAAHCLLYPPWDKNFTVDDLLVRIGKHSRT

46

OHZAFAC<KZHZOAQAEI<OHANRKQIPINIISONZHENOAAOAHI<KONZENIOK

However, the path graph suffers from a number of drawbadkst, Bll previous path graph software
created a static display and static path graphs of largeesegs are somewhat unwieldy. This
is because path graphs for sequences longer than apprekind& amino acids (effectively all

proteins) are multi-scale (i.e. too large to entirely fit imeoview) [65]. Users can choose only
between a broad overview display where no detail is disblErmand a detailed view where no

sense of context is available. Even if the path graph beisglaled is at a relatively detailed
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resolution (like Figure 1.3), amino acid-by-amino acid gamson is difficult because the sequences

are positioned perpendicular to one another.

A more scientifically problematic issue is that not all visilpaths are actually solutions that fall
within the near-optimal neighborhood. While each edge epghth graph is guaranteed to be part
of at least one near-optimal alignment, an arbitrary patbutph the set of edges that comprise the
graph is not guaranteed to be near-optimal. Thus, it is isiptesto know which paths are actually
included in the set of alignments. In addition, there is ny wadiscern which paths occur more

frequently in variable sections of the alignments.

Figure 1.3 is a detailed view of a path graph and demonstrnaéey of the qualities of path graphs.
Rather than the complete alignment, only positions 153e#@ih alignment of the proteins 1AU8A
(vertical sequence on left) and 1TGSZ (horizontal sequetdep) are displayed. Even with a
detailed view, it is very difficult to determine which aminoi@ in the left sequence aligns with
which position in the top sequence. Again, note that thiotdime complete set of alignments. If all
224 amino acids in 1AU8A had been displayed along with all 228no acids of 1TGSZ, it would

be nearly impossible to see any detail whatsoever.

Thus, traditional pairwise alignments excel at allowingadled analysis of individual alignments.

However, they fail to provide any sort of overview capaciRgath graphs provide excellent overviews
of sets of alignments, but fail to provide detailed perspeain the alignments, lose information by
combining all alignments into one display, and do not dgtish the paths within the graph that are

valid alignments in the near-optimal neighborhood.
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Comparison of Near-optimal Alignments with Structural

Alignments

2.1. Introduction

Finding protein structures is much more expensive thandgdrotein sequences so there are fewer
known protein structures than protein sequences. As a goasee, sequence based alignments re-
main an important tool for constructing homology modelsi@stn sequences. However, sequence
based alignment algorithms have difficulties constructigh quality alignments for sequences
with less that ~40% sequence identity. To solve this problefiorts have been made to assess
whether sets of near-optimal alignments can improve theiesezg alignment with respect to a
structural alignment [58][10]. This can be done in two gaherays: 1) by searching for an align-
ment that is closer to the structural alignment than thenogitone, and 2) by evaluating each pair
of aligned residues, assigning them a reliability scorel asing this reliability score to predict

structural relevance.

The first method was used by Jaroszewski, et al. [66]. Theyh@ead alternative alignments
generated in two ways: from a near-optimal alignment geioeralgorithm and by varying scoring
parameters. They demonstrated that there is frequentlyignmeent in these sets that is closer to
the structural alignment than alignments with the highghment score. They concluded that the

two methods of generating alternative alignments have temmgntary (as opposed to redundant)
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information, since the union of the two sets yielded manyevaignments that matched a structural

alignment than either of the single sets.

The implicit assumption of [66] and other work that compaseguence based alignments with
structural alignments [6][67][58] is that the structuribament is correct. In fact, there is no way
to ensure an optimal structural alignment, and differegodihms sometimes produce quite differ-
ent alignments. The hypothesis is that the differencesdmtvetructural alignments are small with
respect to the differences between sequence based anisthadignments, but this has not been
examined quantitatively. This chapter describes resdhathiests this hypothesis. We compare four
alternative structural alignments with sets of alterreatequence based alignments generated by
varying scoring parameters and by sampling the near-optfiglmmment space. The goal of this ef-
fort is to characterize how sets of near-optimal alignmebntapare to sets of structural alignments.
This understanding provides the foundation for extractiigrmation about structural alignments

from sets of near-optimal alignments.

2.2. Methods

The pairs of proteins used to generate alignments in thisareR were domains from the same
homologous superfamily in the CATH [68] structural domaatabase. The goal was to create a
range of proteins from pairs with certain homology to paitseve homology determination with
standard alignment based techniques was much more diffiéddtselected pairs with a range of
similarities: highly similar (SSEARCH [69) < E() < 107'3), similar (10713 < E() < 107%),
barely statistically significantl()=> < E() < 10~2), and not statistically significantff() > 102

). The average percent identities within each group, froneki expectation to highest were 48.2%,
26.5%, 22.5%, and 20.1%, respectively. A structurally digeset of protein pairs was selected from
CATH, including members from the all, all 5, and mixeda/ 3 structural classes. In all, there are
94 pairs from 39 superfamilies. The complete list of doma@gectation values, and percents

identity can be seen in Table A.1 in Appendix A.
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To compare the near-optimal sequence alignments to thetwtalialignments, we first had to gen-
erate the sets of near-optimal alignments. To limit thessifehe sets of near-optimal alignments,
we used the Zuker [8] algorithm because it ensures a divensgls by forcing all near-optimal

edges to be included in at least one alignment while at the $Bne preserving information about
which edges within the set of all edges are used most frelyueWite used the Waterman-Byers

algorithm [7] in the particular case where all optimal alggnts were desired.

To generate the structural alignments we used the Dali, LARMCE, and Matras algorithms.
We chose these methods because they represent diverseteshfor building structural align-
ments and we had access to implementations of all four #tgosi. We used the stand alone
version of the Dali program [21], called DaliLite [70], obtad from the web site [71], with de-
fault parameters. We used the Linux version of the Combiiat&xtension (CE) program [72],
obtainable at [73], also with default parameters. We usedStinuctal method as implemented in
the LSQMAN program [74] from the Uppsala Software Factorys][ Specifically, we used the
Fast Force and Improve commands to get an initial alignmtbeatDP command to implement the
dynamic-programming method of Levitt and Gerstein [76&rtithe Global command to calculate
the statistics based on the Gerstein and Levitt structimalasity score [76]. For Matras, we used

the Linux version of the program provided by the authors [With default parameters.

We used multiple methods to compare different alignmenth ame another. There are two gen-
eral ways in which this can be accomplished. The first is toutate individual metrics for each

alignment. Individual metrics can be calculated using dhly alignment in question and algo-
rithm parameters (e.g. the Needleman-Wunsch sequenceraig score). Pairwise metrics are
dependent on a separate alignment, generally a "gold sthhda determine a comparison score.
An example of a pairwise metric is the number of amino acids &ne aligned identically by two

alignments. Individual metrics will remain constant forigegn alignment whereas a pairwise metric

will change relative to the comparison alignment.

We used two individual scoring metrics in this analysis: guemce-based score and a structure-based
score. The sequence-based method is the Needleman-Wuobeh alignment score, using a se-

lection of gap penalty and scoring matrix combinations. Stnecture-based method is the Structal
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score introduced by Levitt and Gerstein [76]. LSQMAN canggt@n input alignment and calculate
the corresponding Structal score for the two structurasdbe Xalign option), so we can calculate

the Structal score for alignments produced by other seguand structure alignment programs.

The pairwise metric used was the shift score described byeCét al. [78]. The shift score was
chosen over statistics that count the number of shared dmjegen alignments. Comparing the
percentage of residues identically aligned between twgnaients is appealing in its simplicity.
However, these values penalize an alignment the same wheetbar of residues is very close to
being identically aligned, or if the pair is wildly divergeas long as the same number of amino
acid pairs align. The shift score is a global measure of anityl between two alignments that
qguantifies this deviation and accounts for it in the final scdBecause pairwise metrics require a
benchmark alignment, we choose one alignment to act as tihe Standard™ against which all other
alignments are compared. We calculated shift scores usidg ef the four structural alignments

and the near-optimal alignment with the highest structscale acting as the gold standard.

2.3. Results

Figures 2.1a and 2.1b contain the Needleman-Wunsch sdodidfecent sets of near-optimal align-
ments along with the Needleman-Wunsch scores of the fouctstial alignments (X-axis) plotted
against the structural similarity scores of those samaud&nts (Y-axis). Each point represents one
alignment. The black X’s represent the near-optimal alignts and colored shapes represent the

various structural alignment algorithms.

Figure 2.1a is an example where the near-optimal alignmigtitnm produces alignments that
are as good as or better, from a structural perspective tharsttuctural alignment algorithms
according to the structal score [76] (see Appendix A for sege details). This result motivates
the remainder of this research. However, Figure 2.1a is ity one alignment and Figure 2.1b
demonstrates, near-optimal alignments are not alwaysrbéts expected, each of these plots shows

that the set of near-optimal alignments contains one or raligaments with the highest possible
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Figure 2.1. Scatter Plots of Near-optimal Alignments wittuStural Alignments

Scatter plots of sets of near-optimal alignments and siracalignments for one pair of sequences
and one scoring parameter combination. The X-axis is thesgelj alignment score and the Y-axis
is the adjusted structural similarity score. The colorediasq icons represent the structural align-
ments and the x icons represent the set of near-optimalnaégts. Figure a shows a pair of pro-
teins (1b5600 vs. 1mdc00 - see Appendix A for sequence detatliere the set of near-optimal

alignments contains alignments with structural simijastores greater than any of the structural
alignments (Y-axis), implying that those near-optimagatnents are better structural alignments.
Figure b shows a different pair of proteins (3sxIA2 vs. 1ludnAsee Appendix A for sequence

details) where no near-optimal alignment improves uporsthestural alignments.

1b5600 vs. 1mdc00
BLOSUMS50 -10/-2

17.0
|

Dali

= Matras

= CE
LSQMAN

Adjusted Structural Similarity
16.5
1

X Near! optimal

-0.3 -0.2 -0.1 0.0 0.1

Adjusted Alignment Score

Adjusted Structural Similarity

b)

18

16

14

12

10

3sx1A2 vs. 1urnA0
BLOSUMS50 -10/-2

Dali

Matras

CE

LSQMAN
Near! optimal

XK X M E XX

X

Adjusted Alignment Score

37



Chapter 2. Comparison of Near-optimal Alignments with &teal Alignments 38

Needleman-Wunsch score. Figures 2.2a, b, and c illustmate near-optimal alignment quality

relates to structural alignment quality.

Figures 2.2a and 2.2b summarize the results found in Figule®or all 94 pairs of alignments and
all scoring parameters. Figure 2.2a is for the results ofa-optimal neighborhood of 95% of
optimal and Figure 2.2b is for the results of a near-optineginborhood of 75% of optimal. The
X-axis represents expectation and has been grouped infouhéevels of expectation used in this
analysis. Each level cluster along the X-axis has six cokinfach column represents one com-
bination of scoring matrix and gap penalties. The Y-axisaifteplot represents the percentage of
families (pairs of aligned proteins at that level of exp&otg that meet the criteria specified by the
column shading. The different shadings within the columapesent different thresholds at which
one or more alignment within the set of near-optimal alignteeneets a specified criterion. The
lightest shading (minimum), meaning the highest point @heeolumn, represents the percentage
of families where at least one near-optimal alignment hastgebstructural similarity score than
the structural alignment with the lowest structural simifiascore. The next gradation (median)
represents the percentage of families with at least one-omemnal alignment with a structural
similarity score that is better than the average structalighment score. The final gradation (best)
represents the percentage of families with at least oneopamal alignment better than the best

structural alignment score.

The summaries in Figures 2.2a and 2.2b aggregate this iafamfor our set of protein families.
Figure 2.2b shows that for a broad range of proteins, neimapalignments have a better than
60% chance of producing alignments of comparable qualistricctural alignments for alignments
for a neighborhood of 75% of optimal and with expectatioruealless than 0.01. That chance is
approximately 30% if the neighborhood is narrowed to 95%mifroal. The figures demonstrate
that near-optimal solutions are often as good or better straictural alignments. This information
provides evidence that near-optimal alignments can be tesgdprove alignments for sequences
without solved structures. The differences between neididnd size apparent in Figures 2.2a and
2.2b can also be used to help estimate the size of the nelgitmbmecessary for analysis. The

larger the neighborhood is, the more likely it is to find a &ettear-optimal alignment.
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Figure 2.2. Structal Score Summaries

Summary plots of the scatter plots seen in Figure 2.1, fopraliein families studied. The X-axis
represents the four levels of expectation and is clusteyescbring matrix combination with one
column representing one expectation/scoring parametabic@tion. The Y-axis of each plot rep-
resents the percentage of families that meet the critegaifspd by the column shading. The ex-
pectation ranges of the clusters are SSEARCH [69%(E() < 10713), 1071 < E() < 1079),
(107° < E() < 1072), and (E() > 1072 ). The corresponding sequence identity thresholds are
48.2%, 26.5%, 22.5%, and 20.1%. In Figures a) and b) theglgyishading represents the percentage
of families where at least one near-optimal alignment hastgebstructural similarity score than
the worst structural alignment. Subsequent gradationsesept the percentage of families with
near-optimal alignments better than the median and besttstal alignments. Figure a) plots this
information for sets of near-optimal alignments built watheighborhood of 95% of optimal. Figure
b) plots this information for sets of near-optimal alignrteehuilt with a neighborhood of 75% of
optimal. Figure c) represents different information thaguFes a) and b). The Y-axis represents the
percentage of families with at least one structural aligmmeth a sequence alignment score within
the specified percentage of the optimal alignment score.
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Figures 2.2a, 2.2b, and 2.2c also provide evidence thattseieof scoring matrix plays a relatively
small role in the quality of the sequence based alignmeetited. This is seen in the small variation
between results for the same expectation levels in Figugssahd 2.2b and is supported pitests

of the different levels. For the 75% neighborhood and theskivexpectation level, the respective
ystatistics for the minimum, median, and best percentagdanoiies are 0.0236, 0.0043, and
0.0061, each with five degrees of freedom and each with gesadfi1. The results for other levels
are similar. From this we can conclude that the selectiorcoffisg matrix and scoring parameters

play little or no role in the quality of sequence based alignta generated.

While Figures 2.2a and 2.2b provide a perspective on theoetsar-optimal alignments using a
structural alignment score, Figure 2.2c provides a petsfeeof the structural alignments from the
perspective of the Needleman-Wunsch score. The axes ime=®jAc are the same as for Figures
2.2a and 2.2b. The different shadings represent the pagemf families that have a structural
alignment within a certain threshold of the optimal aligmigcore. The lightest shading and high-
est point of each column represents the percentage of &mwiith at least one structural alignment
within 75% of optimal. The next gradation represents thegmtage of families with at least one
structural alignment within 95% of optimal and the last giwh represents the 100%(optimal)
threshold. Figure 2.2c provides reassurance that stalcilignment algorithms produce results

that are within a reasonable neighborhood of the optimatieean-Wunsch score.

Figure 2.3 summarizes the results of pairwise comparisbests of near-optimal alignments with
structural alignments using the shift score [78]. Eachmwiwalong the X-axis represents one pair
of sequences that are aligned. The Y-axis represents alssfaife score (exponentiated with base
100), which allows the display of shift scores between 0@ ho be less cluttered. The blue X
icon represents the "gold standard" against which all athgnments for this pair of sequences was
evaluated, in this case the Dali alignment. Dali was choseitrarily (although Dali is perhaps the
most widely used structural alignment algorithm) and trsults with different gold standards are
substantially similar. The red points represent the shiteas of the other structural alignments and
the box plot represents the distribution of near-optimejrahents. In Figure 2.4, there is no blue
icon (structural gold standard), rather the near-optinighenent with the highest structal score

is used as the gold standard. The neighborhood for the manal alignments is 75% and the
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Figure 2.3. Shift Score Summary Box-plots With Dali Goldrgtard

Box-plots of the shift scores calculated for each neamogitialignment and each structural align-
ment relative to the Dali alignment for each pair of proteirishe four different plots represent
the four levels of expectation (the corresponding sequéatemtity thresholds are 48.2%, 26.5%,
22.5%, and 20.1%). The near-optimal neighborhood is 75%lamdlignment scoring parameters
are BLOSUMS50 -10/-2. The families are ordered such thateHamilies where the near-optimal
box-plot intersects at least one structural alignment@tbe left and highlighted with gray. Those
that do not intersect are to the right. They are subsequendgred by the minimum shift score,
either near-optimal or structural.
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Figure 2.4. Shift Score Box-plots With Near-optimal Gola&iard

42

Box-plots of the shift scores calculated for each neamagitialignment and each structural align-
ment relative to the near-optimal alignment with the higtstgictural similarity scoring for each
pair of proteins. The families, near-optimal neighborhasxbring parameters, expectation ranges,
and ordering are the same as Figure 2.3.
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alignment scoring parameters are BLOSUMS50 -10/-2. The lfasnare ordered such that those
families where the near-optimal box-plot intersects asti@me structural alignment are to the left
and highlighted with gray. Those that do not intersect atheaight. They are subsequently ordered

by the minimum shift score, either near-optimal or struaiur

Figures 2.2 and 2.4 capture the variation within sets of-npémal alignments in relation to
the variation within sets of structural alignments. Thegerks show that while structural align-
ments are generally closer to another structural "golddstati than near-optimal alignments, and
near-optimal alignments are generally closer to one anothe solution spaces overlap in many
cases. Even in the cases where there is no overlap, the fighuesthat in most cases the range of
near-optimal alignment shift scores is close to the strat@lignments. These plots provide clear
evidence that near-optimal alignment space is not vastigrdnt from structural alignment space.
This result motivates our research into how to more effettigupport the use of the information

found in sets of near-optimal alignments.

2.4. Conclusions

This research demonstrates that near-optimal alignmentgare favorably to structural align-

ments. We first note that sets of near-optimal alignmentl vaasonably sized neighborhoods
often contain alignments with structural similarity scotbat are better than structural alignments.
As expected, this intersection increases as sequencetydemreases. However, we show that
it also occurs in pairs with lower percent identity. Thessuttes confirmed our expectations that

near-optimal alignments could provide useful structunédrimation.

This research also shows that the alignment solution spafteed by sets of near-optimal align-
ments often intersect the solution spaced defined by stalcilignments for the same proteins.
This result contradicts the hypothesis that the variatetmken structural alignments is less than the
variation between structural and sequence based aligsmméatso demonstrates the relatively high

variation between structural alignments and shows thaintipeovement of structural alignments



Chapter 2. Comparison of Near-optimal Alignments with &teal Alignments 44

over sequence based alignments is generally small and ddedways improve on a sequence

based alignment.



Chapter 3

Predicting Structural Alignment Significance with Sets of

Near-optimal Alignments

3.1. Introduction

This chapter involves the comparison of pairs of alignedaraicids in sets of alternative alignments
with pairs of aligned amino acids in sets of structural atigmts. The goal is to use the informa-
tion found in sets of near-optimal alignments to assist @ ¢bnstruction of structural similarity

models. Specifically, we use statistics about aligned diesnino acids from sets of near-optimal
alignments to predict whether the same pair of amino acidésis aligned in one or more of the

structural alignments.

Our work builds upon the work of Mevissen and Vingron [58] itieh they introduce an edge
reliability index called robustness. The robustness ofdgeds a function of a set of near-optimal
alignments and is a measure of the degree to which a partiedige contributes to the similar-
ity score for a particular alignment. Specifically, robests is the difference in alignment scores
between the highest scoring alignment that includes the @dguestion and the highest scoring
alignment than excludes the edge. The greater the differisnthe more robust the edge is and the
more important the edge is to the overall alignment scorezidden and Vingron demonstrated that
the robustness of an edge accurately predicted whethedteveas also aligned in the structural

alignment (see Figure 3.12).
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An alternative measure of edge quality is the frequencyahadge occurs within a set of near-optimal
alignments [11]. The expectation is that the more freqyesml edge occurs within a set of align-
ments, then the more important that edge is to the alignnmfehedwo proteins. The frequency of
an edge is calculated as the number of near-optimal aligtsntieat the edge occurred in divided by

the total number of near-optimal alignments for that paipmiteins and scoring parameters.

A third technique for assessing the quality of an edge is limutate the maximum bits-per-position
score for the given edge. The bit score is a value derived fitwenalignment score that takes
the statistical properties (common referred to as Altsbish statistics) of the alignment scoring
parameters into account [54]. The benefit of the bit-scothasit allows alignments created with
different scoring parameters to be compared. Bits-peitipnsis simply the bit score divided by
the length of the alignment. To calculate the maximum bésfosition score we compare the
bits-per-position score for each alignment that includesrdicular edge and assign the maximum
value to that edge. The benefit of maximum bits-per-positothat the bits-per-position score
is a function of the entire alignment, whereas robustnessflaguency are edge specific. This
means that maximum bits-per-position captures the oveuality of the best individual alignment

containing that edge while frequency and robustness réflectet of alignments as a whole.

The goal of this chapter is to build a probabilistic modelttbansiders whether robustness, fre-
guency, and maximum bits-per-position can predict whe#imeedge is in a structural alignment
and do so more effectively than robustness alone. Becaesge$iponse variable in this case is
dichotomous (whether or not an edge is aligned structyralie use logistic regression [79] to
construct a model. The logistic regression model is a géinedalinear model in which a linear

combination of predictor variables estimate the respoas@ie through a logit link function:

10?;(&) = Bo+ Bir1 + ...+ Bprp (3.1.1)
1 —m(x)

where

eB()+B11’1+---+ann

m(x) = 5 Faps TS YT S e (3.1.2)
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is the logistic distribution probability density functiamth z; representing the predictor variables
and B; representing the model parameter estimates. The resullogiisiic regression model is a
function that calculates the probability of a responsemsecific inputs. In this case, we develop

a function that estimates the probability that a particeldge is part of a structural alignment.

This research explores the relationship between sets ofopéianal alignments and alternative
structural alignments. We compare alternative structalighments with each other and with sets
of near-optimal alignments. We demonstrate that neam@btalignments provide a foundation
from which to explore structural alignments. Based on thigrimation we construct a probabilistic
model that uses the information contained in sets of netimapalignments to predict whether or

not specific amino acid pairs (i.e. edges) are likely to béushed in structural alignments.

3.2. Methods

The same protein families used for the structural compaiis@€hapter 2 were used for constructing
the logistic regression model. The data were partitionéal st and training data sets. The data
were partitioned along family lines, meaning proteins frone family were used to either train the
model or test the model, not both. This was done to most tiealily portray real-world alignment
situations where our model is unlikely to be used to ass#@igsing proteins found in families used
to construct the model. The families were distributed sborbiaghly the same levels of expectation

were represented between models.

For the logistic regression we built models by varying thisstors: alignment scoring parameter
combinations, the near-optimal neighborhood size, andsémeple size. The scoring parameter
combination options were BLOSUM50 -10/-2, BLOSUM50 -12/82 OSUMG62 -11/-1, and the
three combined (four levels). The possible neighborhoressivere: all optimal alignments, those
alignments with scores within 95% of optimal, and thoseratignts with scores within 75% of
optimal (three levels). The sizes of the samples (i.e. nurobedges) for each combination of
neighborhood and scoring parameter combination can beise®ppendix A in Tables B.1 and

B.2. Given those values, we chose sample sizes of 500, 1000, 3000, and 10000 edges (five
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levels). For the sets of optimal alignments, instead of D0&@ges, we used all available. Taken
together, the levels created by these variables result@@ rmssible models (four scoring parameter

combinations, three neighborhood sizes, and five samps)siz

We developed models for the four possible response vasiablge response variables reflected the
number of times a particular edge occurred within the setrattiral alignments. The first set of
models used a threshold of one out of four structural aligimeneaning if an edge appeared in
one or more structural alignments, the response variabdecaded as 1 and O if the edge occurred
in no alignments. The second set of models was developed asiesponse variable defined by a
threshold of two out of four structural alignments. Thedtset of models used a response variable
defined by a threshold of three out of four structural alignteend the fourth set of models only
considered the edge structurally relevant if it was inctuareall four structural alignments. Com-
bining the four different response thresholds with the 68spgae models resulting from the model

factors, resulted in 240 models.

The predictors that were investigated for these models thermbustness of the edge, the frequency
of the edge and the maximum bits-per-position of the edgeh Bathe three predictor variables

was normalized between 0 and 1.

To choose which of the three predictor variables were apjatgpfor consideration in our model,
we undertook two analyses. The first was to build single patanmodels using each of the pos-
sible predictors. Following the strategy described in [78]jy variable with a p-value less than
0.25 should be considered for inclusion in the model. Thé th2eshold is deliberately large to
allow variables that individually may only be significant @hinteracting with other variables to
be included. Single variable models were built using theisggparameter/sample size combina-
tions described above. We built models using a thresholavof(te. the edge was in at least two
structural alignments). The second strategy was to usepaviste model construction technique.
Parsimony was measured with the Akaike Information Coit#ri(AIC) [80]. The same sample

sizes and scoring parameters were used for the stepwiseseanas for the single variable models.

1 AlC is an information theory based, relative goodness-dtitistic used to compare alternative models based on
a sample of data. The statistic produced attempts to batiweceomplexity of the model (number of parameters) with
the fit to the data in an effort to prevent over-fitting. For purposes, it is simply a statistic used to compare altermati
models.
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Once the predictor variables were selected, we performeeliayinary analysis to determine which
of the model factors should be used for the final model coostm. This was accomplished by
building regression models for each model factor comboma60 models) and each response vari-
able and analyzing the predictor coefficient estimates terdene if a relationship existed between

the coefficients of models built using different factors.

Once the variable selection and model factor analysis wengptete, we began the final model
construction and analysis. The process for building our ehottludes the construction of four
alternative models and then comparing the results to siledinal model. The first model includes
all three predictor variables, which we refer to as mainafeThe next model includes interaction
terms. The third model includes the main effects and secaihet @olynomials of the main effects.
The final model includes the main effects and second ordenpaoiials of the main effects along

with all of the interaction terms. The intercept is used imaddels during final model construction.

The alternative models are compared in two different wayisst,Rhey are compared by model
deviance (the lower the deviance, the better the model).eVideviance is compared using tié

test. The second test is to compare the performance of thelmatien classifying the test data set
using the area under the ROC curves as the metric. The ldrgeare¢a under the ROC curve is, then

the better the classification performed by the model.

One underlying assumption of logistic regression is thatgiredictor variables are mutually inde-
pendent (to avoid multicollinearity). Correlation anadysf the predictor variables was performed
using a sample size of 5000 with edges drawn from the traisatgvith a combination of the three
scoring parameter possibilities (BLOSUM50 -10/-2, BLOS&MM12/-2, BLOSUM62 -11/-1). The
estimated correlation coefficients and associated statisan be seen in Table 3.1. These results
show that there is some correlation between the predictoablas. However, the correlations are
small in absolute value, so we do not have a strong reasorspesuthat multicollinearity will be

problem. A plot of the sample data can be seen in Figure 3.1.
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Table 3.1. Predictor Correlation Analysis Results

Predictor correlation analysis results. The results amfa sample containing 5000 edges drawn
from the training set with a combination of the three scomagameter possibilities (BLOSUM50
-10/-2, BLOSUM50 -12/-2, BLOSUM62 -11/-1).

\ | R [ t | df | p-value |
frequency vs. max. bits-per-position-0.256 | -18.7 | 4998 | < 7.58 x 10~ 7%
frequency vs. robustness 0.306 | 22.7 | 4998 0
robustness vs. max. bits-per-positipr0.115 | -8.18 | 4998 | < 3.56 % 10~ '©

Figure 3.1. Predictor Correlation Plots

Correlation plots of possible logistic regression pratfisiariables. The plots in the lower left hand
corners are scatter plots of the different predictor vdemlagainst one another. The top right hand
corners are the correlation statistics for the respectiediptor variables. The results are from a
sample containing 5000 edges drawn from the training sét avdiombination of the three scoring
parameter possibilities (BLOSUMS50 -10/-2, BLOSUM50 -22/BLOSUMG62 -11/-1).
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There is no universal goodness-of-fit measure for logistigassiort. The alternative recommended
in the comprehensive comparison of goodness-of-fit testedjistic regression by Hosmer, et al. is
the use of a smoothed residual test statistic [82]. The pevhdr this statistic is calculated in terms

of the chi-squared distribution.

The logistic regression was performed using the R stadistiomputing system [83]. Models were
built using default parameters for tiggm (generalized linear model) function with the logit link
function and thdrm (logistic regression model) function from tieesignlibrary [84] (see Appen-

dices D and E for details).

3.3. Results

The comparison of near-optimal and structural alignmeetmahstrates that near-optimal align-
ments can provide information about structural alignméetsause there is overlap between their
respective solution spaces. Not yet addressed, howevamwighis information can be used in an

effective manner. The logistic regression model provides answer to this question.

3.3.1. Preliminary Variable Selection and Model Factor Andysis

The variable selection analysis showed that all possil@diptor variables should be included in the
final model. Single variable logistic models were built gsgach predictor variable, each scoring
combination, and each sample size. The structural thréstes limited to two out of four structural
alignments for an edge to qualify as structural, leaving itls @ models for each predictor variable.
Of the 60 models, 67% (40/60) of the frequency models, 93U6(E60f robustness models, and
63% (38/60) of maximum bits-per-position models have pealless than 0.25. These data provide

no strong evidence that any one variable should be excludedthe analysis.

2 The most common approach to assessing goodness-of-fit mldylating the Pearson chi-squared statistic or the
equivalent model deviance likelihood ratio [81]. Howewbese statistics are only valid when the number of covariate
patterns (specific combinations of predictor variable @ajuin the sample data is substantially less than the number
of samples. This is a common situation with categorical isted variables, however it is much less common with
continuous predictor variables. For models with contirauptedictor variables the frequency of covariate patteritis w
generally be very low, which means the assumptions negebsaind the Pearson chi-squared statistic do not hold. As
a consequence, a different test must be used.
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An ancillary benefit of this analysis is the apparent trendwshg that models built using only
optimal alignments or with a neighborhood of 75% of optinakfworse than models built with a
neighborhood of 95%. This is reflected in the twofold andefokel increase in models with high
p-values between 95% and optimal neighborhoods and 95% Z¥dnéighborhoods. Of the 180
single variable models constructed, a total of 46 had pesfireater than 0.25. Of these 46 models,
16 were from the optimal neighborhood, seven were from tl8é 88ighborhood, and 23 were from
the 75% neighborhood. The likely reason for this is thaté tieighborhood is too small, then not
enough structural edges are included in the set to createcamae model and if the neighborhood
is too large, then the number of structural edges relatithdmverall number of edges is too small,
which again means there are not enough data with which td builaccurate model. This suggests

that our model building efforts should be focused on the 9%5%ptimal neighborhood.

The alternative approach to variable selection was thevisepconstruction of models where pre-
dictor variables were successively included based on nidimign the model AIC. Of the 60 mod-
els analyzed, each had a different combination of predicdoiables selected for inclusion. Two
models included only frequency, four models included featny and maximum bits-per-position,
four models included frequency and robustness, and 50 mouglided frequency, robustness, and
maximum bits-per-position. This indicates that all préglicvariables should be included in our
analysis. This conclusion is further supported by closergéxation of the steps taken in the model
building. Variable omissions occurred because of very bof@nges in AIC scores. The average
difference between the entering AIC and the smallest AlQofticular models was 0.25% (with
AIC scores ranging in size from 68 (small sample) to 7587éaample)). This tells us that the
difference between possible variable selection strasdgiminimal, which implies that all variables
can be included in the model without significant detrimertite Stepwise analysis confirms the result
produced by single variable model analysis. We therefatkudte all possible predictor variables

(maximum bits-per-position, robustness, and frequerncpur final model construction.

Given the result that our modeling efforts should be retsttico a neighborhood of 95% of optimal,
we constructed 20 models (five sample sizes, four scoringnpetier combinations) for each of the
four response thresholds using the three predictor vasabithout interaction. Upon examining

the estimated model parameters, two observations were:mgdine frequency and maximum
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Table 3.2. Preliminary Analysis Robustness/Interceptiizae Correlation

| Response Threshold R | t [ D.F.| p-value |
1 -0.997| -56.8| 18 9.4e-22
2 -0.995| -44 18 | 8.84e-20
3 -0.993| -36.6| 18 | 2.38e-18
4 -0.996| -47 18 | 2.78e-20

bits-per-position coefficient estimates were nearly emjeint across models, and 2) for each model
the estimated intercept was the negative of the robustrasge.v An analysis of the correlation
between the intercept and robustness estimates for egmmeesthreshold showed extremely high
correlation (3.2). This led us to conclude that either rabess or the intercept could be omitted
from the preliminary analysis. While we have a concrete interpretation of rotasst, we do not
have an equivalent interpretation of the intercept ternt esdates to the set of near-optimal align-
ments. For this reason, we chose to omit the intercept termce@he 80 models were rebuilt
using the new formula, we saw that for all models, the paramestimate p-values were less than
2-16 and that now the estimated parameters for robustness, alithdrequency and maximum
bits-per-position were nearly equivalent across modelsingJthe Kruskal-Wallis test we tested
whether the parameter estimates were independent of theemaining model factors: sample size
and scoring parameter combination. A 5x4 ANOVA test for easgponse threshold and each model
parameter (Tables 3.3, 3.4, 3.5, and 3.6) shows that in esshtbe maximum bits-per-position co-
efficient was dependent on the scoring parameter combimativle being independent of sample
size. Robustness and frequency are independent of botiidadtis result supports the results seen
in Figure 2.2, which told us that scoring parameter seladiiol not substantially alter the quality

of the near-optimal alignment generated.

3.3.2. Final Model Construction and Analysis

As a result of this preliminary analysis, we concluded thateguld choose one sample size and
be confident that the model would not change substantialgcaBse maximum bits-per-position
was dependent on the scoring parameter combination, weteglthe set with the combination of

the 3 individual scoring parameter combinations. For ltyewe present only the model based on
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Table 3.3. Response Threshold 1 Model Parameter ANOVA

\ |D.F.| SSE.| MSE.| F | p-value |
Robustness Sa2.0mple 4 | 0.06091| 0.01523| 0.1231 0.9714
Size

Robustness Scoring Pa- 3 | 0.33994| 0.11331| 0.9161 0.4623
rameters

Residuals 12 | 1.48424| 0.12369

Frequency Sample Sizg 4 | 0.14596| 0.03649| 0.4473 0.7725
Frequency Scoring Pg- 3 | 0.30795| 0.10265| 1.2583 0.3324
rameters

Residuals 12 | 0.97891| 0.08158

Maximum Bits Samplg 4 0.1620 | 0.0405 | 0.1929 | 0.9374358
Size

Maximum Bits Scoring| 3 9.7937 | 3.2646 | 15.5503| 0.0001953
Parameters

Residuals 12 | 2.5192 | 0.2099

Table 3.4. Response Threshold 2 Model Parameter ANOVA

\ |D.F.| SSE.| MSE.| F | p-value |
Robustness Sample Size 4 | 0.07963| 0.01991| 0.1162 0.9742
Robustness Scoring Pa- 3 | 0.66266| 0.22089| 1.2896 0.3227
rameters

Residuals 12 | 2.05534| 0.17128

Frequency Sample Sizg 4 | 0.14190| 0.03547| 0.2787 0.8861
Frequency Scoring Pg- 3 | 0.59148| 0.19716| 1.5490 0.2528
rameters

Residuals 12 | 1.52743| 0.12729

Maximum Bits Samplg 4 0.5443 | 0.1361 | 0.4915 | 0.7423000
Size

Maximum Bits Scoring] 3 | 10.1426| 3.3809 | 12.2110| 0.0005876
Parameters

Residuals 12 | 3.3225 | 0.2769
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Table 3.5. Response Threshold 3 Model Parameter ANOVA

\ |D.F.| SSE.| MSE.| F | p-value |
Robustness Sample SiZe 4 0.3194 | 0.0799 | 0.2907 | 0.8784
Robustness Scoring Pa- 3 0.9764 | 0.3255 | 1.1850 | 0.3566
rameters

Residuals 12 | 3.2959 | 0.2747

Frequency Sample Sizg 4 | 0.28262| 0.07065| 0.3467 | 0.8413
Frequency Scoring Pg- 3 | 0.95350| 0.31783| 1.5597 | 0.2503
rameters

Residuals 12 | 2.44541| 0.20378

Maximum Bits Samplg 4 0.3878 | 0.0969 | 0.2444 | 0.907573
Size

Maximum Bits Scoring| 3 | 12.5553| 4.1851 | 10.5513| 0.001106
Parameters

Residuals 12 | 4.7597 | 0.3966

Table 3.6. Response Threshold 1 Model Parameter ANOVA

\ |D.F.| SSE.| MSE.| F | p-value |
Robustness Sample SiZe 4 | 1.06422| 0.26605| 1.6891 | 0.2168
Robustness Scoring Pa- 3 | 0.61945| 0.20648| 1.3109 | 0.3162
rameters
Residuals 12 | 1.89015| 0.15751
Frequency Sample Sizdg 4 | 0.66212| 0.16553| 0.9745 | 0.4570
Frequency Scoring Pgd- 3 | 0.95178| 0.31726| 1.8677 | 0.1889
rameters
Residuals 12 | 2.03842| 0.16987
Maximum Bits Samplg 4 1.2602 | 0.3150 | 1.7121 | 0.2118
Size
Maximum Bits Scoring| 3 | 19.7619| 6.5873 | 35.7980| 2.89e-06
Parameters
Residuals 12 | 2.2082 | 0.1840
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Table 3.7. Logistic Regression Model Using Main Efféafshoutinteraction
\ | Coefficient| S.E. | Wald Z | P-value|

Intercept| -9.806 1.9191| -5.11 | 0.0000
freq 4.720 0.1334| 35.38 | 0.0000
robust 5.905 2.0162| 2.93 | 0.0034
mbits 2.068 0.1849| 11.19 | 0.0000

Figure 3.2. Model Main Effectgvithoutinteraction ROC Curve
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the 50% response threshold (two of four structural aligris)dmere. The final models for the other

thresholds can be found in Appendix E. The final models aluihe the intercept term.

The first model we built used each of the three predictorsrirafiects) without interaction. Table
3.7 contains the result. The model goodness of fit test hasaug- of 3.39210~1°. The ROC

curve (Figure 3.2) shows that model exhibits excellentsifization according to [79]. Analysis
of the residuals shows (Figure 3.3) a small amount of curegatu the Residuals vs Fitted and
Scale-Location plots, which suggests that quadratic temnight be applicable. The Normal Q-Q
plot in Figure 3.3 indicates that the residuals are not ntyndestributed, however this is not gener-
ally a large concern [79]. The Cook’s Distance plot indisa@eoutliers, but from a sample of 5000,

this is not a large concern.

The second model includes both main effects and all interaterms. The model goodness of fit
tests returns a p-value of 0.395, much higher than the firsleatnd he results of the model can be

seen in Table 3.8. ANOVA analysis of model deviance showsttiainteraction terms do indeed
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Figure 3.3. Model Main Effect®Vithoutinteraction Residual Analysis Plots

The Residuals vs Fitted and Scale Location plots are usetéidify non-linearity in the residuals.
In and ideal linear model, one would expect the residual®tm fstraight lines in both plots. The
Normal Q-Q plot tests for normality of residuals and the Cedkistance plot tests for outliers in
the sample set.
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Table 3.8. Logistic Regression Model Using Main Effédfith Interaction
\ | Coefficient| S.E. | Wald Z | P-value|

Intercept 41.48 6.563 6.32 | 0.0000
freq -49.35 7.788 | -6.34 | 0.0000
robust -46.07 6.857 | -6.72 | 0.0000
mbits -111.69 | 27.111| -4.12 | 0.0000
freg*robust 54.39 8.109 | 6.71 | 0.0000
fregq*mbits 76.91 34.416| 2.23 | 0.0254
robust*mbits 113.77 | 28.346| 4.01 | 0.0001
freg*robust*mbits| -71.99 35.850| -2.01 | 0.0446

Table 3.9. Main Effect8VithoutInteraction vs. Main Effect®Vith Interaction ANOVA

The low p-value indicates that the models are significanifferdnt with the Main Effect with
Interaction model being superior because of the lower maoeghnce.

| Model | Residual D.F| Deviance D.F| D.F. | Deviance| P-value §?) |
Main EffectsWithoutIn- 4996 3440.4
teraction
Main EffectsWith Inter- 4992 3118.1 4 322.3 1.714e-68
action

improve the model (by decreasing deviance) by a significauuiLent (Table 3.9). The area under the
ROC curve (Figure 3.4) also shows the improvement. Howévelysion of the interaction terms
increases the apparent curvature in the residual plotsi@ig.5). An additional worry is that the

p-value of the model goodness of fit test is not significant.

The curvature apparent in the Residuals vs Fitted and calation plots (Figures 3.3 and 3.5)
suggests possible polynomial behavior. Therefore, welfutt a model that included second order
polynomial terms, but excluded interaction. The completaleh results can be seen in Table 3.10.
The model goodness of fit test resulted in a p-value of 0. Th&¥A results comparing the
Polynomial main effects with no interaction with the maifeefs with interaction model can be
seen in Table 3.11. This analysis shows that polynomial mifécts do not improve the model over
the main effects with interaction. The polynomial predicterms do not appear to improve and
appear to worsen the apparent curvature in the Residuaitt@d r Scale-Location plots in Figure
3.6. The ROC curve in Figure 3.7 shows no improvement oventhim effects with interaction

model.

The final model we constructed included all polynomial mdfeas with interaction terms. The
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Figure 3.4. Model Main EffectgVith Interaction ROC Curve
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Table 3.10. Logistic Regression Model Using Polynomial M&ffectsWithoutlnteraction

F stands for frequency, R stands for robustness, and M sfandsaximum bits-per-position. 1
stands for linear terms and 2 stands for quadratic terms.

Coef S. E wald Zz P
I ntercept -1.503 0.05943 -25.30 0.0000
F1 153. 176 4.59308 33.35 0.0000
F2 -9.012 2.89360 -3.11 0.0018
R1 14.224 3.07510 4.63 0.0000
R2 13.525 2.78759 4.85 0.0000
ML 45.554 3.92488 11.61 0.0000
e -22.094 3.48997 -6.33 0.0000

Table 3.11. Main Effect8Vith Interaction vs. Polynomial Main effec#ithoutinteraction ANOVA

| Model | Residual D.F| Deviance D.F| D.F. | Deviance| P-value §?) |
Main EffectsWith Inter- 4992 3118.1

action

Polynomial Main Ef- 4993 3371.9 -1 -253.5 3.943e-57
fectsWithoutInteraction
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Figure 3.5. Model Main EffecteVith Interaction Residual Analysis Plots

The Residuals vs Fitted and Scale Location plots are usetéidify non-linearity in the residuals.
In and ideal linear model, one would expect the residual®tm fstraight lines in both plots. The
Normal Q-Q plot tests for normality of residuals and the Cedkistance plot tests for outliers in
the sample set.
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Figure 3.6. Polynomial Main Effect/ithoutinteraction Residual Analysis Plots

The Residuals vs Fitted and Scale Location plots are usetéidify non-linearity in the residuals.
In and ideal linear model, one would expect the residual®tm fstraight lines in both plots. The
Normal Q-Q plot tests for normality of residuals and the Cedkistance plot tests for outliers in
the sample set.
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Figure 3.7. Polynomial Main Effect/ithoutinteraction ROC Curve
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results can be seen in Table 3.12. This model has model gssdridit score 0b.88719 x 107 7.
The ANOVA results comparing this model with the main effewith interaction model (our best
model so far) are seen in Table 3.13. The analysis tells ughibgoolynomial main effects with
interaction has produced the best model yet. However, ts@Ras vs. Fitted and Scale-Location
plots (Figure 3.8) show the worst curvature yet, while th€@@ormal plot indicates normally
distributed residuals. The ROC curve (Figure 3.9) showyg anl/1000th difference in the area

under the curve between the main effects with interactiodeh@Figure 3.4).

The final model, which includes quadratic terms and all adgons and shows the best model
deviance. By this measure, this is the basidel Additional evidence of the quality of the model is
the increased apparent normality of the residuals. Thecdif§i is that the Residual vs. Fitted and
Scale-Location plots show unusual curvature. Interelstiige Residual vs. Fitted plot shows less
actual curvature, than sharp bends. At the extreme end of Hxis the lines appear straight, flat,
and show that the model is essentially perfect (residualFdure 3.8). Towards the middle of the
plot, the model shows residual error, but again the linegapgelatively straight. The implication

is that the residuals are behaving according to two diftelieear functions. It is unclear why

this occurs. Another worry is that the ROC curve shows no awgment over the model with

interactions, but without quadratic terms. Figure 3.10ashthe ROC curves from each alternative

model overlaid on one another. The final worry is that while gloodness of fit shows a significant
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Table 3.12. Logistic Regression Model Using Polynomial M&ffectsWith Interaction

F stands for frequency, R stands for robustness, and M sfanasaximum bits-per-position. 1
stands for linear terms and 2 stands for quadratic terms.

Coef S. E wald Z P
I nt ercept -1.198e+00 1.214e-01 -9.86 0.0000
F1 1.468e+02 7.944e+00 18.48 0.0000
F2 1.382e+01 5.598e+00 2.47 0.0136
R1 4.622e+01 1.479e+01 3.12 0.0018
R2 3.117e+01 1.728e+01 1.80 0.0713
ML 2.937e+01 1.244e+01 2.36 0.0182
M -3.813e+00 1.046e+01 -0.36 0.7154
F1 * R1 5.705e+02 9.044e+02 0.63 0.5282
F2 * Rl 1.951e+03 5.382e+02 3.62 0.0003
F1 * R2 -3.682e+02 1.108e+03 -0.33 0.7395
F2 * R2 1.417e+03 6.378e+02 2.22 0.0263
F1 * ML 2.908e+03 8.002e+02 3.63 0.0003
F2 * ML 7.887e+02 5.220e+02 1.51 0.1308
F1L * M2 -1.919e+03 6.566e+02 -2.92 0.0035
F2 * M2 4.938e+02 4.362e+02 1.13 0.2576
R1L * ML 7.819e+03 1.407e+03 5.56 0.0000
R2 * ML 4,536e+03 1.699e+03 2.67 0.0076
RL * M2 3.675e+03 1.068e+03 3.44 0.0006
R2 * M2 2.267e+03 1.445e+03 1.57 0.1167
F1 * RL * ML -2.378e+05 8.572e+04 -2.77 0.0055
F2 * RL * ML 2.085e+05 5.229e+04 3.99 0.0001
F1 * R2 * ML -2.057e+05 1.082e+05 -1.90 0.0573
F2 * R2 * ML 1.260e+05 6.127e+04 2.06 0.0397
F1 * RL * M2 -1.279e+05 6.493e+04 -1.97 0.0488
F2 * R1L * M 1.356e+05 4.149e+04 3.27 0.0011
F1 * R2 * M2 -1.554e+05 9.197e+04 -1.69 0.0911
F2 * R2 * M 9.515e+04 5.030e+04 1.89 0.0585

Table 3.13. Main EffectdVith Interaction vs. Polynomial Main EffecW/ith Interaction ANOVA

| Model | Residual D.F| Deviance D.F| D.F. | Deviance| P-value §?) |
Main EffectsWith Inter- 4992 3118.1
action
Polynomial Main 4973 3024.84 20 93.29 8.635e-12
EffectsWith Interaction
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Figure 3.8. Polynomial Main Effect#fith Interaction Residual Analysis Plots

The Residuals vs Fitted and Scale Location plots are usetéidify non-linearity in the residuals.
In and ideal linear model, one would expect the residual®tm fstraight lines in both plots. The
Normal Q-Q plot tests for normality of residuals and the Cedkistance plot tests for outliers in
the sample set.
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Figure 3.9. Polynomial Main Effect#/ith Interaction ROC Curve
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p-value, it is possible that the p-value is a result of thgdesample rather than the quality of the
model. Given the large model sample size, it is also reasernabquestion the model deviance

statistics.

The statistics tell us that the quadratic interaction masléhe best, and perhaps asmade] it

is. However, we are less interested in the model than in wienodel accomplishes for us,
meaning how well the model classifies edges. The ROC cunasg gtat the ability of the models
to classify data is essentially the same. Our sense of pangirtherefore dictates that we select
the simplest model, the main effects without interactionsing the standard described in [79],
this model demonstrates excellent discrimination. Thepevalue for the goodness of fit test, the
significance of all variables in the model (Table 3.7), arelrsasonable error bars apparent in the
partial residual plots (Figure 3.11) provide further evide that the selected model is appropriate

and of high quality.

Finally, and most importantly, the model improves upon tlse of robustness alone to predict
structural significance as demonstrated in Figure 3.12urBi@.12 shows a Receiver Operating
Characteristic (ROC) curve that summarizes the abilityoblustness to directly estimate structural
significance combined with the ROC curve for the main effegthout interaction model. Predic-

tion for robustness is accomplished by selecting a threstalue and assigning those edges with
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Figure 3.10. ROC Curves of Each Alternative Model

Black represents the main effects model without interactidue represents the main effects model
with interaction, red represents polynomial main effecithewut interaction, and green represents
polynomial main effects without interaction.
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Figure 3.11. Partial Residual Plot

Partial residual plots for the three predictor variablethimmain effects without interaction model
(Table 3.7).
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Figure 3.12. Main Effect8Vithoutinteraction vs. Robustness ROC Curves

Receiver Operating Characteristic (ROC) curve of robusstribresholds (red) and the logistic re-
gression model using main effects without interactiondk)a The larger the area is (closer to 1),
the better the prediction is. The logistic regression méslelescribed in Table 3.7. This curve
represents an approximate 16% improvement over robusth@ss. In both cases, the results are
from a sample containing 5000 edges drawn from the traingtgvigth a combination of the three
scoring parameter possibilities (BLOSUM50 -10/-2, BLOSBMM12/-2, BLOSUMG62 -11/-1).
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values above the threshold structural significance. Thedighiows that robustness can accurately
predict structural significance greater than 76% of the tirhide the main effects without interaction

model predicts the structural significance of the edge greatin 89% of the time.

The information about structurally significant edges canged to enhance construction of homol-
ogy models for sequences with relatively low sequence igersomething that is currently very

difficult.

3.4. Conclusions

This chapter details the construction of a probabilisticdeidhat predicts which pairs of aligned
amino acids in a set of near-optimal alignments are likelgggart of a structural alignment. Our
model uses the frequency that edges occur in a set, the nelsgsbf the edge, and the maximum
bits-per-position for the edge to estimate this probahillthe resulting model is very accurate and
improves upon the use of robustness alone to directly etisteuctural significance of edges by
approximately 16% (89-76/76). The improved predictionl wilow researchers to create better

homology models by providing confidence that particularesdghould or should not align.

The model has been shown to be robust to different varialffiesting the model. We have shown
that among the combinations examined, the selection ofrecanatrix and alignment scoring pa-
rameters plays very little role in the quality of the inforioa derived from the alignments. This
is further confirmed by the results in Chapter 2 that showe litariation in results between scoring
parameter combination. The model has been shown to be indepeof the sample size used to
create the model and the threshold used to generate thensespariable as well. Therefore, in
addition to the demonstrated accuracy of the model, we nhave confidence that the model is

robust to different modeling factors.

The results in Chapter 2 suggest that larger near-optimghherhoods are better because they are
more likely to contain alignments that are as good or behan tstructural alignments. Clearly,
larger solution spaces will have a better chance of findingteebalignment, but the logistic re-

gression model building process demonstrates that thistinecessarily desirable. The modeling
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results show that if the near-optimal neighborhood is tegdathen the frequency of structural
edges within the set of edges will be too low. Based on thesatsewe conclude that a neigh-
borhood of approximately 95% of optimal is sufficient for amering useful information about the

proteins. From a human perspective, this is a useful reggilise smaller neighborhoods imply
smaller numbers of alignments which are much more tractiabia a cognitive perspective [34].

This is also useful from a computational perspective bexdaige neighborhoods can result in
hundreds of thousands of alignments (particularly for lsegquences with low percent identity)

whose generation can consume valuable time and compwhtesources.

The model developed has been integrated into our systerorifoled in Chapter 4) that allows users
to build and visualize sets of near-optimal alignments. dlhitity to explore alternative alignments
afforded by the display combined with the predictive powfehe logistic regression model provides

a valuable tool for researchers to build high quality aligmts of proteins with low percent identity.



Chapter 4

Generating and Visualizing Near-optimal Alignments

4.1. Introduction

Chapter 2 demonstrated that near-optimal alignments dalyprcompare to structural alignments.
Chapter 3 showed how the information contained in sets afogmal alignments can be used to
effectively predict structural alignment significance.isTthapter integrates that research and newly
developed techniques for visualizing and displaying rgaimal alignment information such that

it can be used in biological applications.

4.1.1. System Goals

The primary goal of the system is to aid understanding of étationship between two proteins
by visualizing large sets of alternative alignments. Owtaymn enhances the display paradigms of
both the pairwise alignment and path graph in order to ekfih@ strengths of each and improve
upon their weaknesses. To accomplish this goal, the sydtemwsabiologists to generate, display,
and analyze large sets of alternative alignments. Thiseglyas predicated on the hypothesis that
consistency and variation in sets of alignments can heldigreeliably aligned sections of pro-
teins. This hypothesis was confirmed in Chapter 3. To this &m& system communicates this
information about a set of alignments while providing me&orsdetailed, amino acid-by-amino
acid comparison. Because of the importance of expert krigelen the assessment of alignment

guality, the system supports mechanisms that allow usepyity their expertise to the alignments
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under consideration. These mechanisms include addindadi$patures to identify any relevant
annotations such as structural information, the abilitiilter out alignments with known problems,

and the ability to directly manipulate the alignments basedtiypotheses under consideration.

A secondary goal for the system is to facilitate understamdif the alignment generation algo-
rithms. To accomplish this, researchers have the abilitgasily control and modify alignments
and to understand how their alignments are scored by thenadigt generation algorithms. In this
way researchers can develop alignment of interest and sedhir alignment corresponds with
near-optimal neighborhood. In addition, researchers taweability to easily substitute their own
algorithms for those provided with the system to facilitax@erimentation and algorithm develop-

ment.

4.1.2. System Requirements

The system requirements are minimal. The only significagtirement is for the system to be
web-based so that diverse users can use the system witledairifien of installing specific software.
An implication of the web-based system requirement is thatsystem runs on different operating

systems to support users with different computer requirdsne

4.1.3. System Design

The design of the system has three primary parts. First agighhgn input, responsible for collecting
the necessary sequences, annotations, and algorithm gt@aramecessary to generate alignments.
Second is the generation of the alignments themselves @adigithe display and control of the
alignments. The display and manipulation of sets of aligmsés the primary contribution of this
chapter. This part of the system consists of two alignmesualization techniques, an animated
pairwise alignment and an enhanced path graph, along wéiurkes that allow users to exploit
their expertise and customize the display to fit their speci@ieds. Support for expertise includes
mechanisms to filter alignments, highlight annotations diffdrent aspects of alignment sets, and

the ability to edit alignments from within the software.
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4.2. Algorithm Input

The sequences, alignment parameters, and annotation® @eqaences are entered using a web
form [85]. Sequences can be entered by cutting and pastirixy, specifying a NCB! recognized
accession or Gl (Geninfo Identifier) number. The researtier specifies the scoring matrix and
gap penalty parameters. Multiple combinations of scoriadyixand gap penalties can be specified
to generate a comprehensive set of alignments. The uses@dsiies the near-optimal neighbor-
hood that the alignment generation algorithm should camsithe web form currently allows only
global alignments to be created. Local alignments can bdatetuby specifying subsequences to
be aligned. The reason for this is that this research hasfoolysed on global alignments, so we

can not be sure that the conclusions made in Chapters 2 arld ®htocal alignments.

Sequence annotations are an important part of the displegue they allow users to incorporate
external knowledge into the display. Annotations are iratyl into the display with highlighting
mechanisms discussed in section 4.5.1 of this chapter. tAtions are imported into the system
in a separate file which is encoded in General Feature FoIGREZ [86]). Annotations may be
imported directly from files already in GFF2 format from eitlthe web form or when run as an
application. When the display is run from the web, the sysitsn fetches any available annotations

from the NCBI databases.

4.3. Alignment Generation

Methods exist to generate all near-optimal alignments iwith certain threshold of the optimal
alignment [7]. However, the fundamental difficulty with geating all near-optimal alignments is
the large number of alignments created. Even with relatigbrt sequences (~200 amino acids

! National Center for Biotechnology Information, part of thnited States National Library of Medicine
(http://www.ncbi.nlm.nih.gov). The various NCBI databasare primary repositories for much of the world’s genomic
and proteomic knowledge. The databases can all be queretheiinternet providing an invaluable resource for re-
searchers.

2 Both the alignment generation and the display softwareadlgtdo support local alignments, the features are
merely hidden from the users. These features can be acdagsedning the alignment generation and display applica-
tions directly rather than over the web.
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in length) and within a modest neighborhood of the optimars¢1-2%), there can be millions of
near-optimal alignments. Therefore, various algorithagetbeen developed to sample (i.e. reduce)
the near-optimal alignment space [8][56]. The primary doalthese algorithms is to generate a
diverse sample, meaning that the sample is drawn from ab péihe near-optimal solution space.
In practice, this means that the alignments in the sampliéigxds much variation as the set of all
near- optimal alignments. Even using sampling technigiias, possible to end up with several

thousand near-optimal alignments for a pair of sequences.

4.3.1. Zuker Algorithm

Alternative alignments for the display are generated uaifg+ program that implements an algo-
rithm described by Zuker [8]. The Zuker algorithm has thrasibsteps. First, a standard a dynamic
programming technique aligns the two sequences, gengafisrward alignment score matrix. We
chose an implementation close to that described by Gotoh [28like the most space efficient
versions of this algorithm, the entire score matrix is maiiméd in memory. Once the forward score
matrix is generated, the process is repeated on the reveespgences, creating a reverse score
matrix. Next, the forward and reverse score matrices arebowed into what we call the Zuker
matrix. The value for node i,j in the Zuker matrix is calceltby the score in the forward matrix
at point i-1, j-1, plus the score in the reverse matrix at rh-ir-j+1 (where m and n are lengths of
the respective sequences), plus the value of the scorinixrf@tthe residues at locations i and j in
the respective sequences. The value at node i,j of the Zulignis the optimal score of a global
alignment that is constrained to align residue i in sequemeewith residue j in sequence two. For
a more detailed discussion of this matrix and the algorithigeineral, see the original paper [8] and

the RNA folding paper where the technique was originallyalieped [55].

During the creation of these two score matrices, a secondopanatrices is created that keeps
track of the path used to generate the scores at each node iedpective score matrix. These
path information matrices are used to reconstruct the hatigmments when generating a set of
alignments. For a given point, i,j, the algorithm constsuitie alignment by working forwards and

backwards from that point through the information matriCEss process is repeated for every point
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i, where the value of that point in the Zuker matrix is gredtean the near-optimal neighborhood
threshold value specified in the input. The result is a sawfphear-optimal alignments of the input
sequences. As noted by Zuker, this algorithm only createsrple of near-optimal alignments; at
any given node there is often more than one direction thagligement can follow that produces
an alignment with the optimal or near-optimal score. A fimctrandomly chooses one of the
possible directions. The randomization ensures that meae optimal gap edges will be included
in the final set of alignments and reduces the occurrencemicdie alignments. A property of our
implementation of the Zuker algorithm is that the order #ejuences are entered into the algorithm
slightly alters the sample of alignments generated. Thésrssult of the algorithm to trace back

through the score matrix to construct the alignment oncetbees have been calculated.

The Zuker algorithm calculates an alignment for each madicfe éwhere one residue aligns with
another residue, as opposed to a residue aligning with atgap)alls within the near-optimal

neighborhood. For this reason, we can be certain that thplsamreated reflects the diversity in the
entire set of near-optimal alignments for the specified m@ghood. This has been confirmed by
overlaying path graphs generated with a Zuker sample ama &lbnear-optimal alignments. The
overlay showed that the only edges in the set of all nearrgbtalignments that were not present in

the Zuker sample were gap edges, something of relativélly titological interest.

4.3.2. Waterman-Byers Algorithm

While a sample of the near-optimal solution space is gelyaaththat is necessary for most analyses,
there are instances when it is desirable to have all nearapalignments. To this end, we have
implemented the Waterman-Byers algorithm [7] for genagptill near-optimal alignments. The
algorithm uses the same forward dynamic programming tecienas the Zuker algorithm to calcu-
late a forward alignment score matrix. Unlike the Zuker alfpm, it is unnecessary to maintain a
direction matrix. Once the forward alignment score mateg been calculated and stored, the algo-
rithm begins a simple stack based depth-first traversaleop#th graph beginning at the m,n node
of the alignment score matrix (m and n are the respectiveesegulengths). As the tree is built, the

reverse alignment score is calculated up to the given nodgt, the algorithm determines which of
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the possible branches from that node will maintain a scotkeimvthe near-optimal threshold. This
is calculated by summing the score of the branch edge, ttre sfdhe tree to that point, and the
value of the alignment score matrix at the end of the branahhA tree is built, an alignment is also
created, which explains why the direction matrix is unnsags Once the traversal reaches the 0,0

node, the alignment is output and the algorithm retreatsddast branch and repeats the process.

Even with today'’s fast computers and large amounts of diakesfit is relatively easy to overburden
a computer when using the Waterman-Byers algorithm. Thgdothe sequences and the lower
the percent identity they share, the larger the set will ber éxample, using scoring parameters
BLOSUM®G62, gap open of -6, gap extend of -1, and a neighborled6&6 (only optimal alignments)
the sequences 1cv2A0 and 1cqzBO yield 402,978 alignments.

4.4. Display Sub-system

Our display consists of two primary modes for viewing aligamts: 1) an animated pairwise align-
ment that displays a large number of alignments in sequende2aa path graph display built
using zooming display techniques. The two display modesapplemented by mechanisms for
selectively highlighting different aspects of the disgathe ability to filter alignments from the
defined set, and the ability to manually edit and create algnts to be considered along with the

generated set. These features facilitate the applicatidoroain expertise to the display.

4.4.1. Animated Pairwise Alignments

To help in understanding the relationships and how aligrismeary within a set, we describe a
method for visualizing large sets of pairwise alignmentmgignimation, specifically the rapid

serial visualization technique [87]. We also provide cahtegarding how one alignment compares
to all others in the set and provide some overview infornmetioncerning relationships in the align-

ments. By animating the alignments, many alignments agepted while maintaining the pairwise
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alignment paradigm that is so effective for detailed congoas. The animation is generated by dis-
playing each alignment for a short period of time, much like frames in a movie. The resulting

effect of the animation is analogous to astronomical bliokiparators (blink microscopes) where
alternating images of the same view are displayed and amctzhbin one image but not the other

appear to flicker and become salient.

By itself however, the visual effect of displaying one aligent after the other does not help illu-
minate relationships because different numbers of gamsdeétliably aligned sections cause these
sections to shift in the display window. We therefore depebbthe steady display algorithm, which
steadies the text on the screen when sections of severahadigis are invariant. The visual effect
can be described as "islands of stability” (Figure 4.1). idddy aligned sections of alignments
become salient because they appear steady on the screewersady) variable sections become
apparent because they appear to move on the screen. We femtiphasize the steady display by
highlighting the background of the amino acids where a daskekground color indicates a more
frequent (and thus reliable) alignment. The combinatiothefanimation and highlighting provides

overview information regarding reliably aligned sectiavithin a set of alignments.

Coupled with the pairwise alignment display is a screenainirtg alignment information including
the alignment score and the parameters used to create aedise@lignment. This can be valuable

for distinguishing alignments in the same set that are edeasing different parameters.

Traditionally, near-optimal alignments are presentectiogr in a single display with a path graph
or dot plot [8][9]. This representation effectively higifits sections of high variability between
alignments, but these displays lose information by commigiill alignments into one display. Figure
1.3 provides an example of a partial path graph of a subsetaf-optimal alignments of two
serine proteases 1TGSZ (NCBI GI: 230350) and 1UVTH (NCBI £x181297). The alignment
shows variability at the beginning and end of the alignmentitawing the multiple paths that the
alignment could follow. In contrast, in the middle of thegaiment there is only one path and hence
only one way for the amino acids to align (this is expectechashl’ in the active site is aligned).
The primary difficulty with a path graph display is determigiwhich of the alignment paths are

more likely. Additionally, path graphs are difficult to user fresidue level analysis, because the
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Figure 4.1. Conserved Highlight

A screen shot of a near-optimal alignment of 1TGSZ (NCBI G0250) and 1UVTH (NCBI GI:
2781297). The alignment was created using BLOSUM50 -10ieRaanear-optimal neighborhood
of 95%. The steady display, conserved highlight, numbenragnes, and customized active site
highlights are selected. The three active site residuebheokérine protease catalytic triad (46H,
90D, 183S in 1TGSZ; 43H, 99D, 205S in 1UVTH) are highlighteithwellow rectangles between
the residues. The orange highlighting indicates the masterwed regions of the alignment. The
darker the orange, the more conserved the region. The adighis substantially conserved around
all three active sites.
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actual sequences are placed perpendicular and hencet distainone another. Readers of path
graphs may have difficulty mentally mapping horizontal tieatt and diagonal edges into insertions
and deletions (e.g., with which amino acids in 1UVTH does2bt amino acid in 1TGSZ align?).

Options for annotating a path graph with additional infotioraare also limited.

Traditional text based alignments, with one sequence glabeve the other (as seen in BLAST
and FASTA output), are ideal for displaying the precisedesito residue mapping between the two
sequences. But it is difficult to show alternative text baaigghments and highlight the differences
between the alignments. One strategy puts alternate adigtsnabove and below the optimal align-
ment in some regions. This becomes more difficult when thebmurof gaps differs among the

alignments, as this changes the overall alignment lengthth& number of alignments increases,

the difficulty increases.

Although it is relatively straight-forward to display adgr set of alignments as successive frames in
a movie, the naive approach does not make it easy to disshguinstant from variable alignment
regions. We seek to highlight the residues that consistatitin with one another and distinguish

them from those positions that are more variable. To do this,sections of an alignment that
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are most consistent should remain steady on the screen mbile variable regions should move
around. This is not possible with the conventional constqtced character placement used by

BLAST and FASTA.

To address this difficulty, we developed an algorithm foclg pairs of residues (the two residues
that align an edge in a path graph) according to the frequetittywhich the pairs occur in the set

of all alignments and the relative position of that pair witAn alignment. The result is a display
where residues that consistently align with one anotheainestationary in the display, while those

that align with many different residues appear to move about

The first step is to determine the relative position of ea@mnall pair of residues in relation to the
overall length of the alignment. To calculate this we divilde index (position in the alignment) of
the pair by the length of the alignment. Next this relativeifion is averaged with all of the other
relative positions for the given pair, to produce an averaggtive position for the pair. Pairs can
occur in many different alignments within a set of solutiofi$ie frequency that each pair occurs

with respect to the number of alternative alignments is aeddoulated.

When we are rendering the text on the screen, we use the aveslagive position of given pairs
to determine the placement of the particular pair. The geeralative position is multiplied by the
width of the display to get the exact position on the screeeretthe pair will be rendered. The

width of the display is determined by the longest alignment.

Each pair has only one average relative position and isftirereendered in the same location on the
screen every time. The visual effect of stability is an eraptgroperty of the data. Pairs that appear
in a large number of alignments appear stationary on thescence they are always rendered in
the same location. Residues that are part of pairs that apfeaquently move around, since the

different pairs have different average relative positions

4.4.2. Zoomable Path Graph

Path graph representations of sets of alignments are dignkacking in the detail necessary for

amino acid-by-amino acid comparisons of sequences. Becthapath graph provides an excellent
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Figure 4.2. Pairwise Alignment and Path Graphs

(&) An image of the pairwise alignment of Dermcidin (NCBI ©3d751921) and Lacritin (NCBI
Gl:15187164) in steady display mode and with robustnessligiging. (b) Zoomed-out view of
an entire enhanced path graph of a set of near-optimal aégtsyof proteins 1AU8A (NCBI GlI:
115725) and 1TGSZ (NCBI GI: 230350) . (c) Zoomed-in detailexiv of an enhanced path graph
of the same set of alignments of 1AU8A and 1TGSZ. Both setdigriments created using BLO-
SUMS50 -10/-2 with a neighborhood of 95% of optimal.
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overview of the set of alignments, we developed an enhaneesion of the path graph that supports
detailed analysis. Our path graph was built using pannidgaoming technology [88] that obviates

many of the problems with static displays.

As mentioned previously, a significant problem with pathpisais one of scale. If the path graph is
large enough that amino acid level comparisons are possitaa it is generally impossible to see
the entire path graph in one window. Likewise, for any butshertest sequences, if the entire length
of the sequences is visible, then it is generally impossibldiscern any detail. The implication is
that users need a way to change the scale of the graph to deddiatled views as well as broad
overviews. Zooming elegantly solves this problem by alloyvusers to seamlessly transition from

broad overviews to more detailed perspectives on the pajhgr

In azoomed-in view of a path graph, users must be able to nhevedction of the graph in view. The
usual solution of scroll bars does not work in this case beedlie path graphs are not necessarily
symmetrically diagonal in shape. Thus, any amount of soglacross would be accompanied
by some variable amount of scrolling down and vice versa. fidwxd for complicated scroll bar
interaction is eliminated by the zooming and panning ndiggaparadigm. Users can quickly

navigate to desired locations by either panning the disjgdlge region or zooming into the region.

A problem with the zooming and panning paradigm is the pla@raf the textual amino acid labels.
In a static plot, the characters are generally placed albaddp and left axes. When zoomed-in,
however, the characters fall outside of the range of viewad@mmmodate this problem, our system
uses floating sequence labels that stay centered over dspiective edges and maintain the same

scale as the path graph as users navigate around the palth grap

One difficulty in interpreting path graphs is due to the dis@between the amino acid labels of the
two sequences. This perpendicular layout makes it diffituiee which amino acids are aligned
with which. The drag and pan paradigm solves the problem ydiphl distance between the labels.
To see how the amino acids of a particular section align, ginsply a matter of dragging that
section of the alignment to the top left corner of the displdere the sequences intersect and are

consequently relatively close to one another. An addititesture that further facilitates amino acid
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level comparison is context sensitive mouse-over higlilngfy The amino acids being aligned are
highlighted when the mouse hovers over a particular eddecigtaph. Gaps are represented using
this highlighting scheme by shrinking the width of the hight box such that it falls between the

two amino acids where the gap is logically inserted.

Figures 4.2b and 4.2c are examples of a zoomable path graginaged by our system. The images
are of the same path graph, but at different resolutionaurgig.2b shows a zoomed-out, overview
of the enhanced path graph. No detail is discernible, homtinered sections indicate unreliably
aligned sections. Figure 4.2c shows a zoomed-in, detaitd of the enhanced path graph. The
yellow highlight boxes show the amino acids that align fa ¢#age at the intersection of the yellow
boxes. The blue path indicates the alignment currently mooesideration. The red paths indicate
alternative alignments and the saturation of the greeresinndicates robustness. The hue and
saturation of the green circles are identical to those us#uki animated pairwise alignment, which

facilitates comparison between displays.

Another issue is that not all visible paths are near-optipadihs. Our system uses animation to show
the valid paths. Just as the pairwise alignment cycles girdle set of alignments displaying them
in sequence, the path graph cycles through the alignmenAsdhe animation cycles, the current

alignment is displayed in blue while the rest of the pathsd@gsplayed in red.

4.5. Support for Expertise

Human expertise is the only way to evaluate the quality ofl@gmanent. To support the application
of this expertise, our system includes filtering and hidftiigg mechanisms. Additionally, users
can directly edit alignments to create their own. Coupletthtie alignment generation algorithms,

this creates a mixed-initiative interaction scenario.
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4.5.1. Highlights

Highlights provide a mechanism for enhancing the displag presentation of alignments. By
supplementing the information in the sequences alone wegvalkers to apply their expertise to
achieve novel and unexpected results. All display anrwiatmay be turned on and off by the user
to suitindividual preferences. There are two types of hgitts: edge quality highlights and external
highlights. Edge quality highlights are computed diredtym the set of near-optimal alignments,
are provided in all displays, and require no external dataerBal highlights depend on informa-
tion not derived from or inherent to the set of near-optimarements. These highlights include
sequence annotations automatically downloaded frommadtelatabases and highlights defined by

the researcher.

4.5.1.1. Edge Quality Highlights

Alone, the Steady Display algorithm provides powerful ailsevidence of reliably aligned regions
of a set of alignments. However, we can also use the recordiedrequency information to color
the background of each pair according to the frequency opére(Figure 4.1). The most frequent
pairs are colored a saturated orange, with the color grpddetreasing in saturation in proportion
to the frequency of the pairings. Thus, in Figure 4.1, théoregaround each of the three residues in
the serine protease catalytic triad of 1TGSZ and 1UVTH agetlost saturated. The least frequent
pairings have a white background. In the specific alignmbatvs, the lightest colors correspond
to regions that are not present in 1TGSZ. This coloring mlesifurther visual indication of the

consistency of certain sections of alignments.

Another highlight provides an alternative estimate ofatglly aligned sequences. Robustness, dis-
cussed earlier, is a measure of how important a given pamof@acids is to the overall score of that
alignment [58] (Figure 4.2a). Pairs of amino acids with highustness values have been shown
to correlate with pairs of amino acids known to align usindi@ensional structural alignments
[58]. Similar to how we displayed the frequency highlighf1d], the more robust a pair of amino

acids, the darker is the background shading. Together tdtlsteady display effect, the background
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Figure 4.3. Similarity Highlight

A TRY1 BOVIN (NCBI GI:2507249) and ELA1_PIG (NCBI GI:1193% alignment with the
steady display, names, numbers, identity and similarityoop selected. Constructed using BLO-
SUM50 -10/-2 with near-optimal neighborhood of 95%.
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coloring for frequency and robustness provide powerful@igvidence of an invariant property of

the set of alignments (i.e. those sections of the alignntlatsare consistently aligned). See Figure
4.2a for an example of the pairwise alignment display withusiness highlighting. Robustness
is indicated by the green ovals where higher saturatiorcatds higher robustness. This figure
also shows the variable spacing between amino acid chesdbtg results from the steady display
algorithm. Evidence of the unequal spacing of the charadseseen in the uneven right hand sides

of the rows.

Beyond the background highlights that provide assessnuéragnment quality, the display pro-
vides sequence identity information and orientation hggtts. The display can highlight matching
(red) and similar (pink) residues (Figure 4.3), which pd®& visual cues of sequence identity. For
ease of orientation and navigation the display allows thh@sece names to be displayed along with

numbers that help identify locations within the sequences.

4.5.1.2. External Highlights

If the researcher specifies a protein by the GlD/accessiatbeuthen we also have access to the
annotation information available in the NCBI databasesanly alpha helices or beta strands are
found in this information, we provide an option for those at@tions to be displayed. The icons

for both the alpha helices and beta strands are designedrtbie into a more meaningful icon
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Figure 4.4. Secondary Structure Highlight

A TRY1 BOVIN (NCBI GI:2507249) and ELA1_PIG (NCBI GI:1193% alignment with the
steady display, names, numbers, and secondary structarenation highlighted. Constructed us-
ing BLOSUMS50 -10/-2 with near-optimal neighborhood of 958iate how when only one sequence
has a secondary structure annotation at a given locatioitdheappears gray and incomplete, but
when both sequences have an annotation at the same poigacpn changes color and appears
complete. The alpha helix icons that appear like arcs omdapdown U’s; when these two regions
align, the helix symbols combine to form a loop symbolizingedix. Likewise, the icons for beta
strands come together to form an arrow.
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when both residues in a given pair share the same secondacyusé. For alpha helices, an arch
beneath the upper sequence combines with an X above the $®gaence to create a small loop
that symbolizes a helix (Figure 4.4). Similarly, the icons lbeta strands combine to produce an
arrow. In addition to these automated annotations, userspecify their own annotations to be
highlighted on the alignments. These highlights allow aeyast visual annotations like small loops

to appear when alpha-helix regions of proteins align.

While we believe the specified alpha-helix and beta strandsianake the most sense for those
particular annotations, users are not constrained to titoss. We have developed a system that
allows fine-grained control of display icons. Part of the agament is the ability to map different
display icons to specific annotations which allows usersdate highly customized displays. Figure
4.5 is an example where hydrogen bonded turn annotationsigitkghted using circle icons. The
choice of circle icons was arbitrary and could have been aeyad the other available icons (e.g.

helix, strand, circle, triangle, or rectangle).

Apart from automatically downloaded annotations, usezsaso able to define and create their own

annotations using two other mechanisms. First, users &@a@directly edit and create annotations
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Figure 4.5. Custom Highlight

A TRY1 BOVIN (NCBI GI:2507249) and ELA1_PIG (NCBI GI:1193% alignment with the
steady display, hames, numbers, and hydrogen bonded fighigyhted with circles. Constructed
using BLOSUM50 -10/-2 with near-optimal neighborhood of&5The choice of circles was ar-
bitrary and could have been a different icon, such as themgtgs used in Figure 4.1. The icon
choice is made by the user.
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within the software. This includes specifying specific libmas to highlight and mapping icons to
the newly defined annotations. The yellow rectangles Higtilag the functional residues in Figure
4.1 were manually entered into the system. Annotations Isanbe imported in GFF format by the
user from within the application. This is of use when usergehare-existing annotations that are

not available in public databases.

4.5.2. Filtering

Sets of near-optimal alignments can be very large making tiéellectually unwieldy. To solve
this problem and to allow biologists to focus on specific deas of alignments, we have provided
means for filtering alignments. Filters are a mechanism fanawing large numbers of alternative
alignments. When a filter is applied, only alignments thasphe filter are displayed. Two filters
have been implemented and a clearly defined software iotedtows for the easy creation of new
filters. The edge filter allows users to specify ranges of anaicids in each sequence that must
align with one another. For instance, if particular funcibamino acids are known to align, then
a filter can be created that omits all alignments that do nghdhe specified regions. The second

filter allows users to omit or include alignments within atfarar range of scores. This filter allows
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biologists to control their exploration of particularlyrdgge solution spaces and to explore hypotheses

about differences between solutions at different thregshof the optimal score.

4.5.3. Mixed-initiative Interaction

Mixed-initiative interaction involves dynamically sulisting human judgment for different levels
of computer automation [41][89]. Alignments are simply heahatical models optimized according
to particular scoring assumptions and as a consequence tdaweys produce alignments that
are biologically correct. As the near-optimal solution apés very large and is only sampled by
most algorithms, there might be no alignment that improyesuhe optimal solution. However, a
near-optimal alignment usually exists that is close to meprg upon the optimal. In these situations
users can substitute their judgment for that of the compatiéectively acting as the alignment
generation algorithm. Users are able to select any alighiauath edit it by adding and removing
gaps. The resulting alignment is then added to the set afrakgts under consideration. The new
alignment score is calculated according the same scoriranyEers as the other alignments so that
users can evaluate the quality of their reasoning by companvith the mathematical model. By
creating this feedback loop, users will be able to developteebunderstanding of the limitations of
the algorithms or flaws in their own reasoning by comparirgrtbutput with that of the alignment

algorithms.

4.6. System Implementation

The system consists of three separate programs: 1) a Pers@iBt that collects the sequences,
annotations and alignment parameters using the BioP4grif®aries and then manages the creation
of alignments, 2) C++ code that generates the set of neanalpalignments defined by 1), and 3)
the Java code that displays the alignments. The display isoglgtten so that it may be run either
as an applet within a web browser, as a Webstart applicatioas a stand alone application. This

modular design facilitates different modes of interactigth the system and provides the freedom
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necessary to use the display in novel ways. The softwareidleddas been available on the internet

at [85]. Screenshots of the display can be seen in Figuresahé b.

4.6.1. Alignment Transmission

Once the set of optimal and near-optimal alignments is gaadr the alignments are formatted for
transmission to the display software. The actual alignsiané encoded using the FASTA -m9c
encoding. For protein and DNA alignments, matches, ingestiand deletions are encoded by '=’,

'+’ and '-’ followed by the length of the match, insertion deletion. Thus, the alignment:

PYL- | DGSSHI TQS

PLVEI DG- - MLTQT

would be encoded as: "=3-1=3+2=5". The parameter infoonatsequence data, and alignment

information file is human readable and editable text.

4.6.2. Export

When run as an application (rather than an applet), usess th@vnecessary permissions to write
files to local hard drives. We therefore allow users to saviewa data in the system such as sets of
alignments, single alignments in text format, and sets obtations. We have also implemented a
mechanism that allows researchers to export images geddrgithe system in the Scalable Vector
Graphics (SVG) [91] format. This feature allows researshemproduce publication quality images

of alignments and path graphs that include all customizghligihts and annotations.
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Figure 4.6. Alignment Display Screenshots
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4.7. Conclusion

The animated pairwise display is a novel visualization mégie that effectively highlights invariant
regions of sets of near-optimal alignments. As demonstiat€hapter 3, this information provides
insight into possible structural significance. Combinethwhe different highlighting schemes, the
animated pairwise alignment display provides a flexibleriigice for visualizing and exploring large
sets of near-optimal alignments. The zoomable path graphiges a mechanism for visualizing
entire sets of alignments in one screen. It solves the pmubtd scale inherent in static path graphs
by using zooming technology. By providing mouse-over higjtts we improve the usability of the
path graph for detailed analysis. By providing filters wewallusers to adjust and constrain the set
of alignments being displayed without the computationadtgnsive task of recreating the set with
new parameters. The ability to manually edit and createali@nts combines human expertise with
algorithmic efficiency, thereby creating a mixed-init&iinteraction environment. This feature
can help users develop a deeper understanding of the &lgsribehind sequence alignment. By
combining the detail-oriented pairwise alignment with twerview-oriented path graph we have
developed a powerful system for exploring protein alignte@mparticular and sequence alignments
in general. The effectiveness of the software is evaluatagrims of two case studies related in

Chapter 5.
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Case Studies

To evaluate our system, we discuss two case studies whesydtem described in Chapter 4 was

successfully used in scientific endeavors.

5.1. Dermcidin vs. Lacritin Homology Confirmation

This first case involves the alignment of the proteins Lac(NCBI GI:15187164) with Dermcidin

(NCBI GI:16751921). Lacritin is a secretion enhancing dathat increases exocrine secretion in
the lacrimal gland (i.e. tear ducts) [92]. Dermcidin is atpno that is hypothesized to play a role in
breast cancer tumorigenesis [93]. Both proteins have bedirstudied in the laboratory, and as a
consequence, information about locations of various fanat regions in the proteins was available
prior to this analysis. What was not known, however, was irethe two proteins are homologous

(i.e. share a common ancestor).

The homology relationship between the two proteins wasHirpbthesized by a group at the Dana
Farber Cancer Institute based on functional charactesisfithe proteins [G. Laurie, personal com-
munication, Nov. 2004]. This hypothesis could only be @éditivalidated using other techniques.
This is not an unreasonable result because the sequendessatiean 30% identical (meaning less
than 30% of the amino acids in the sequences match exactlig.rdnge of sequence identity is the
so-called "twilight zone" [94] of homology detection besawsequences often do not have enough

amino acids in common to develop the statistics used to legdtattomology. In this case, using



Chapter 5. Case Studies 92

the BLASTP [2] and PRSS [1] programs, the researchers wdestalestablish weak statistical
significance supporting the hypothesis that the proteieshamologous. Statistical significance
is expressed in terms of the expected number of times annadighscore as good or better than
that of Lacritin aligned with Dermcidin would be found in avgn database of sequences. In this
case, using the default BLASTP parameters (BLOSUMBG62 sgariatrix, gap open of -11, and gap
extend of -1), the expected value for a database of 10,008e8eqgs was 0.01375, which is just less
than the significance threshold of 0.02. While this resustagistically significant, it is a borderline
case. This result could not be further supported using atstiai alignment because neither protein
structure had been solved. Therefore, the researchersousatar-optimal alignment system to

analyze the proteins and increase their confidence in th@logy of the proteins.

The researchers began their analysis by entering the segjugarmation about both sequences into
the system website and specifying the alignment paramefdignment parameters were chosen
based on empirical results [95] and personal experienegghameters used were the BLOSUMS50
scoring matrix, gap create = -10, gap extend = -2, near-gptiraighborhood of 95% of optimal).

The generation algorithm yielded a set of 55 near-optinighatents. The researchers then viewed

the set of alignments and performed their analysis usinguireated pairwise alignment display.

When viewed in the animated pairwise alignment display wither the robustness or frequency
highlight selected, the most salient section of the aligmmg the first 20 amino acids of each
protein. This subsequence appears bright green in theagli¢plgure 4.2a). In addition to being
brightly colored, this section of the alignment also appaaost steady in the animation (i.e. that
as alternative alignments are displayed, this section doeappear to change). Prior knowledge of
both proteins told the researchers that this region reptesie signal peptide. It was expected that
the signal peptide regions would align because they are amtomany different secretory proteins
and are expected to be very similar because they serve tleefaantion. The salience of this region
demonstrates that our system helps identify highly corseregions. However, because the signal
peptide is used only for transport during protein synthesigl otherwise plays no function in the
behavior of the protein, it was of relatively little biolagil interest to these researchers. This is an
example of how expert knowledge of this particular protestpbd direct the researcher’s attention

to regions of more immediate interest.
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Beyond the signal peptide are several other regions ofasterThese regions were identified a
priori in laboratory experiments and our system was useamdirtn hypotheses about them [92].
With the robustness highlight selected, the second mognsakgion of interest is amino acids
60-70 in Lacritin and 40-50 in Dermcidin (Figure 4.2a). Thection includes two hypothesized
O-glycosylation sites in Lacritin. Similarly, a hypothesd N-glycosylation site surrounding amino
acid 120 of Lacritin is also highly salient among the conedrvegions of the alignment. These
regions are of interest from a functional perspective amghaients of functional regions are ev-
idence of homology. Our system allowed researchers to devanfidence in the alignments of
these regions because of the characteristics indicatekdebyaiience, namely consistent alignment
of those regions across the set of alignments and the rassstrighlighting. This was new ev-
idence of homology for the researchers. The display wasusséul to the researchers because
the identification of interesting regions confirmed pregioasults through different means. The
display also indicated three other salient regions. Basemigent knowledge, it is unclear whether
the additional regions are of functional interest. Howettee highlights suggest areas to consider

in future research.

One section of Dermcidin that clearly does not align withtitatis positions 20-40 of Dermcidin.
This is indicated in two primary ways by our system. Firsg #mino acids appear to move on
the screen as alternative alignments are presented. Sdbendariability is made evident by the
absence of any coloring from either the frequency or rolasstrhighlights. These visual signals
indicate that there is no way to consistently align thosessations of the two sequences. Addi-
tionally, the presence of a large number of gaps in the alegrisof this section suggests that these
regions do not match. This subsection of Dermcidin was shHoyorter et al. [93] to nearly match
a mouse cachectic factor. A cachectic factor is an agentthates a general loss of health, in this
case related to breast cancer. The fact that this sectiegrai@ppear to align with Lacritin tells us

that the cachectic factor is most likely not present in Lagrivhich is good news for our tear ducts.

By correctly identifying different regions of the proteitizat were expected to align, identifying
regions not expected to align, and providing levels of camnfa in those assessments, the system

allowed the researchers to conclude that the proteins am®logous. It is important to note that
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this conclusion is based on the judgment of the researchi@esrole our display system played in

this process was to provide the additional information eeed reach that conclusion.

The researchers did not use the zoomable path graph forahelysis. We speculate that this is
because they were unfamiliar with the path graph paradigmgiws likely because heretofore path
graph software has not been widely available. Some of tleermdtion used by the researchers in
this case can also be seen in an un-enhanced path grapht billt Rath frequency can be patrtially
inferred by presence of large or small numbers of edges heuin-enhanced path graph lacks the

robustness highlight that was an important tool for theasdeers.

5.2. Near-optimal Alignment in Linear Space

This second case involves the use of our system to assistiddbelopment of space efficient
near-optimal alignment generation algorithms. Currenegation algorithms requir@ (mn) space
(where m and n are the lengths of the sequences being alififjg8]) Huang et al. [96] and Myers
and Miller [51] demonstrate techniques for generatinglsiagjgnments irO(n) space. Our efforts
involved adapting these techniques to generate sets ebpéiaral alignments. Central to this effort
were algorithms described by Huang et al. for finding the etiges that comprise the lower left
and upper rightmost boundary paths of a path graph, hernbefalied Left and Right. Figure 5.1
shows images of small path graphs with the left and right damnpaths highlighted. Our strategy

started with creating implementations of the Left and Reggbrithms.

This case describes a part of the process in developing e sgfficient alignment generation
algorithm: using the path graph display to verify the camess of the Left and Right algorithm im-
plementations. Table 5.1 summarizes our final strategy lemdytstem features used to accomplish
this goal. Starting with candidate implementations of tledt land Right algorithms, we needed to
validate that the algorithms correctly returned the left @éghtmost paths. To do this, we used the
Waterman-Byers algorithm [7] to calculate all near-optimdggnments within the specified thresh-
old. We used this set to verify that the solutions generayethér Left and Right algorithms actually

fell on the left and rightmost boundaries of the path gragie Waterman-Byers algorithm was used
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Figure 5.1. Leftmost and Rightmost Path Graphs

Views of the same path graph with the (a) bottom leftmostnatignt highlighted and (b) top right-
most alignment highlighted. The sequences are random. Wkey selected to be short enough to
display clearly in one panel (no zooming necessary) aneérdifit enough so that distinct leftmost
and rightmost boundaries would be visible. The sequenagsised solely for illustrative purposes.

to ensure that every possible edge was included in the segofreents being displayed. It was then
a matter of looking at the path graph and verifying that th& Biyorithm returned the leftmost

boundary of the Waterman-Byers set and the Right algorittormed the rightmost boundary.

We chose relatively short, artificially created sequencegHis task so that the Waterman-Byers
set would not be too large for the large neighborhood of ogitichosen. The reason for the large
neighborhood was so that there would be visually distirfttled rightmost boundaries. The align-
ment parameters used were the BLOSUMS50 scoring matrix, gap of -10, gap extend of -2, and
a near-optimal neighborhood of 75%. The result was an optsec@re of 60 and a near-optimal

threshold of 45.

We then created two candidate alignments using our Left aghtRlgorithms. Once created, we
combined them with the alignments generated by the WateByans algorithm so that they could
be displayed together in our system. The end result was a 4619oalignments (177 generated
alignments and two candidate alignments). The path grapbrgeed from this set of alignments

can be seen in Figure 5.1.
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Table 5.1. Case Two Overview

Overview of the steps performed and system features usedsa tWo.

| Step|| Task | System Feature Used \

1 Generate candidate alignments and thehe algorithm implementation we aie
Waterman-Byers set; combine the two.| testing and the alignment generation saft-

ware.
2 View all alignments. Path graph display.
3 Attempt to find candidate alignments. | Animation of path graph and filtering.

4 Manually create left and right alignments Alignment editor, path graph display, and
pairwise display.

5 Find manually created alignments. Animation of path graph and filtering.

6 Verify manually created alignments. Path graph display.

7 Determine scores of manually creatgd\lignment information screen.
alignments.

Our system is not capable of highlighting more than one alignt at a time in the path graph
display. It is not possible to specify an alignment a prian §pecial treatment or guarantee the
order in which the alignments are highlighted. These ddditeedesign decisions ensure that the
user does not fixate on one "optimal” alignment and ignoredleof the set. However, this meant
that we first had to find the boundary path alignments withangbt. The first step was to watch
the path graph animation to find our candidate alignmentsonUpst view, we did not notice the
alignments in the animation. Instead of stepping throughatignments one-by-one, we decided to
limit our search space by filtering out those alignments tliéitnot match some criteria found in
the left and rightmost edges. This meant making an edge fiilegrincluded only alignments that
contained a few edges along either of the boundaries. Siatisdims of the pairwise alignment,
this meant specifying pairs of amino acids that must aligithWcreasingly tight filters (including
more and more edges along the boundaries), it became appiaaéthe left and rightmost paths
were not in our set of alignments. The Waterman-Byers dlgorishould have returned all align-
ments within the specified threshold and we were confidenthiesoutput from the Left and Right
algorithms was included in the set. The two possible expians for this inconsistency were that
our implementation of Waterman-Byers was flawed and was e¢igting all, or that the Left and

Right implementations were incorrect and returning erooiealignments.

Determining which explanation was correct was relativéigightforward. Instead of relying on the
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Left and Right algorithms to create the boundary alignmeméscreated them manually. We used
the alignment-editing feature in the system to create tluedlignments. We selected an alignment
to edit that was close to what we wanted, meaning it incluésdrsl of the boundary edges we were
interested in, and then edited the alignment so that it Gethgletely on the boundary. This process
was facilitated by both the pairwise display and the patplydisplay. The path graph display made
the path perceptible while the pairwise display helped eshasv the amino acids of the alignment
actually aligned. The need for the pairwise alignment digphlas further emphasized because the
alignment-editing screen presents the alignment in a jmerfashion. Once finished, we included

each of the manually created alignments with the original se

To verify that the new alignments were correct, we vieweantlie the path graph with the rest of
the set. To see the exact two alignments, we applied thesfteviously created and quickly found
the new alignments. It was clear that we had created the loyradignments correctly, because

when they were highlighted, the proper boundary edges gfakie graph were highlighted.

Now that we had our target alignments, we had to verify thitteeithe new alignments were im-
properly excluded from the set by the Waterman-Byers algworior that our Left and Right imple-

mentations were incorrect. This was accomplished by vigwtire alignment information screen
for each of the manually created alignments. This screehuslthat the leftmost alignment had
a score of -10 and the rightmost had a score of -2, both wetibéhe near-optimal threshold of
45. This meant that the alignments were properly excludenh fihe set of all alignments by the

Waterman-Byers algorithm. It also meant that our Left anghRimplementations were incorrect.

This information was useful beyond evaluating the candidaft and Right implementations. It
also led to the conclusion that arbitrary paths in the pa#tplgrcreated by a set of near-optimal
alignments were not necessarily near-optimal themseluais. effort also provided more evidence

that our implementation of Waterman-Byers was done cdyect

The display system provided a number of tools that facddathis analysis. First, it was easy to
visualize the set of all near-optimal alignments in the gatiph. We could also clearly see what the

target alignments for the Left and Right algorithms showdThe notion of left and right is entirely
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absent from the pairwise display paradigm. Had the pairdisglay been the only mechanism for
visualizing alignments, we would have had to compute thiedefl rightmost paths. Computing
these paths is not necessarily difficult, but it would be memer prone and far more work that

simply seeing the edge on the path graph.

Given the relatively large number of alignments to manalge,filters provided a simple mecha-
nism for quickly narrowing our search set. The successiydicgiion of tighter and tighter filters

provided the first evidence that the Left and Right outputhhigt have been correct.

Once we were aware that a problem existed with our candidigten@ents, the ability to edit and cre-
ate new alignments from within the application and to subsatly add the alignments to the set of
alignments for display made the validation process muctkgui Central to our ability to determine
whether the manually created alignments were in the WatefBy&rs set was the system’s ability
to calculate the alignment scores of the manually creaigdrakents. This demonstrates the value
of a mixed-initiative paradigm where both human generatedl @mputer generated alignments

can be created and compared directly.

After iterating through this process several times we wéte # generate correct implementations
of the Left and Right algorithms and continue in our effodscteate a)(n) space near-optimal

alignment generation algorithm.
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Conclusion

The research described in this dissertation contributdsetbody of knowledge in both the Systems
Engineering and Bioinformatics disciplines as they relat@formation visualization and sequence
alignment. Sequence based alignment remains an impoot@inior modern biologists because of
the inexpensive and readily available protein sequencenrdtion and the relative lack of structural

information. Near-optimal alignments provide an oppoitiuhio exploit this sequence informa-

tion in novel ways. Visualization techniques are an impurtaol for bioinformatics researchers

for managing the ever increasing amount of available ingdirom. This research enhances our
understanding of the relationship between sequence basgebptimal alignments and structural
alignments and provides guidance that aids in the exptoraind understanding of near-optimal
alignments. The research manifests itself in a softwargesyshat uses novel visualization tech-
nigues to support the generation, display, and exploratforear-optimal solution space. Chapters

3 through 5 describe the analysis, model building, and sséwhat constitute this research.

Chapter 2 describes the comparison of sets of near-optilgaingents with alternative structural
alignments. This research demonstrates that sets of péarab alignments compare favorably
to structural alignments. Prior to this research we did mmenstand how closely near-optimal
alignments could approximate structural alignments. Ndrveke understand how well structural
alignments generated using different algorithms comptrexhe another. We now understand that
near-optimal alignments can meet and exceed the qualityuaitaral alignments. While this occurs
more frequently as percent identity increases, we also shatt occurs with low percent identity

alignments. We also understand the extent to which the ayganal alignment space intersects
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with the structural alignment space. We have disproved ypothesis that the variation among
structural alignments is less than the variation betweetstral and near-optimal alignments. To-
gether, these results demonstrate that the near-optinganant solution space often intersects
with the structural solution space and that structuraltsmis cannot be guaranteed to be better
than near-optimal alignments. The implication of this wigkhat the information contained in

near-optimal alignments should be useful in understansiingctural alignments.

The results of Chapter 3 demonstrate that information ddrivom near-optimal alignments can be
used to better understand structural alignments. Thisdsmaplished by construction of a proba-
bilistic model that accurately predicts whether or notipatar pairs of amino acids can be expected
to align in structural alignments. We built a logistic reggimn model that incorporates three met-
rics derived from sets of near-optimal alignments: theudesgy that an edge occurs within a set of
near-optimal alignments, the robustness of an edge, anddkiEmum bits-per-position score for an
edge. These predictor variables are shown to predict with &curacy whether or not a given edge
is part of a structural alignment. This is a greater than 18fdrovement over prior results that use
robustness alone to predict structural significance. Theetimy results also provide insight into
the size of the near-optimal neighborhood that should bstoacted. We have found that a neigh-
borhood of 95% of optimal provides a reasonable compronesgden enough variation within the
set of alignments to uncover interesting edges, yet notrge las to become unmanageable or that
the predictive power of edges becomes obscured by large engimbhese results provide a concrete
mechanism for researchers to identify interesting regafnaglignments, predict which parts will
likely be of significance, and potentially improve homolagypdels for protein sequences without

structural information.

The results to this point have shown that near-optimal aligmts contain useful structural infor-
mation and one technique for extracting this informatiorhafter 4 describes our research into
visualizing near-optimal alignments that attempts tolitate their use by researchers without de-
manding programming expertise. We have developed a sysigniniproves upon the traditional
paradigm of studying single, algorithmically optimal aiigents as a means for understanding the
relationship between two proteins. The two parts of ourtatya involve visualizing large sets

of alternative, near-optimal alignments and supportirgithroduction of expert knowledge. The
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visualizations of alternative alignments consist of anresv path graph that provides perspective
on the entire set of alignments and a detailed pairwise dgiméhat allows for close examination
of alternative alignments. The ability for users to expkxpert knowledge is facilitated by the

application of highlights and filters and the ability to ditly create and edit alignments.

The system is not a replacement, but rather a supplementgiingxsequence analysis techniques
like single, optimal alignments, database searching nastrend others. The utility of our system is
that it allows detailed analysis of sets of protein alignteghat was heretofore difficult to accom-
plish. Of particular interest is the ability to provide ight into alignments with low percent identity
where other tools lose effectiveness, such as those betvaseitin and Dermcidin. The process of
analyzing large sets of alignments rather than single al@ms provides more information about
how the two sequences align. This extra information helpglde confidence that certain sections
of proteins are reliably aligned and is valuable to all atigamts, not just those with low percent
identity. Information about reliably aligned regions cam Used to predict interesting regions of

alignments.

We have demonstrate that the software does actually enipemfiemance by presenting two case
studies in Chapter 5. Together, the two case studies deratsmsiow the different features of the
system can be used to effectively explore sequence aligisraed their associated algorithms. The
first case study shows how researchers used the animatedseadlisplay to confirm the homology
of two proteins with weakly statistically significant exp&tion values. In addition to confirming
past research, this increases our confidence in the alfilinesoftware to predict regions of interest
in future cases. The second case study demonstrates thHalifiexif the system and its ability to
be used in novel ways to support exploration and scienticaliery. This case describes how
the software was used to facilitate the implementation oOén) space near-optimal alignment

generation algorithm.

In conclusion, we believe that the research presented Ineréha system developed represent sig-
nificant improvement in our understanding of near-optiniighanents and the ability of researchers

to closely study protein sequence alignments.
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6.1. Future Work

This work could be extended in many ways. Some possibleduitwjects include further analysis
of the relationship between structural and near-optinighedents, further refinement of the logistic

regression model, and improvements in the software system.

The results in Chapter 2 (Figure 2.1) suggest that the usi#iag-optimal alignments in conjunc-
tion with structural alignment algorithms could improveustural alignment algorithms. It would
be interesting to study whether it would advantageous tahsaear-optimal alignment with the
highest structal score to either seed a structural alighmlgorithm (i.e. use the alignment as an

initialization point for structural alignment heuristjasr as a structural alignment itself.

While we believe that the logistic regression model is rolaul stable across different inputs, it
might be useful for study this further. In particular, it wde useful to characterize the perfor-
mance of the logistic regression model between pairs of tmty proteins rather than a sample
consisting of edges from many different pairs. It would dbsointeresting to combine the four
response variables described in Chapter 3 into a singlgaatal variable and develop a model

based on that.

The enhanced path graph solves many of the problems inheitbrstatic path graph presentations
However one problem remains: because not all paths thrdwegpdth graph are valid near-optimal
alignments, the path graph can be misleading. Our solutidrighlighting individual paths with
animation is somewhat dissatisfying. Because this tectenrgquires animation to see all of the
valid alignments, we lose some of the benefit of a single agerdisplay. One potential solution
would be to expand the path graph into three dimensions ejptidproviding perspectives on single

alignments.

There are several aspects of the display system that coolddprbeneficial results. From a us-
ability perspective, future work on the display system d$thonvolve evaluating the effectiveness
of the display software in usability studies to further refthe user interface. In terms of display

features, the ability to highlight the path graph in a marar&logous to the pairwise display could
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be substantially enhanced. It would also be interestingcpboee the ability to dynamically filter
alignments by dragging the mouse to select regions thaidlooshould not align. This technique

could be used in either the pairwise or path graph display.

A feature that has been repeatedly requested by users arld wxdend the functionality of the
system is the ability to display alternative multiple aligents. An initial problem would be the
generation of alternative multiple alignments becaustoabh possible [97], it is not clear that
“efficient” translates to interactive speed. The techngquged for the animated pairwise alignment
would work for multiple alignments, however it is unclearether the path graph techniques could

be applied.

1 Alignments of three or more sequences.
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Appendix A

Protein Data

Table A.1. Protein List

A listing of the CATH IDs, expectation, percent identityethumber of alignments, and the sample
set for each pair of protein domains used in Chapters 2 andh&. nlimber of alignments is the
number of near-optimal alignments generated with a neididmal of 95%, BLOSUMS50 -10/-2,
BLOSUMS50 -12/-2, and BLOSUM®62 -11/-1.

Sequence 1 Sequence 2 Expectation| Percent Number of| Sample
CATH ID CATH ID Identity Alignments
1a4704 1b90A3 8.2e-09 34.6 5552 test
1la4704 1cyg03 1.3 18.6 991 test
lakl02 1srp02 0 51.8 80203 train
1akl02 1cglAO 0.00096 22.4 16573 train
lakl02 1bggMO 0.14 20.2 15053 train
1a06A5 1uor03 2.2e-07 19.5 3110 train
lagzBO 1rtu00 0.013 21.9 4587 train
lagzBO 1rds00 1.7 23.3 5099 train
lauqg00 1a03A0 1.6e-08 20.8 15586 train
1b2rA2 1bx0A2 1.4013e-45 | 52.1 37782 test
1b2rA2 lamoA4 8e-09 29.5 16106 test
1b2rA2 1ndh02 0.00068 21.3 7389 test
1b5600 1pmpAO 5.9e-37 55.6 20160 train
1b5600 1dc9A0 1.1e-09 24.4 7769 train
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1b5600 1Ifo00 0.044 19.4 5126 train
1b5600 1mdc00 0.22 21.2 3826 train
1bbhAO 1cpq00 9.3e-08 26.3 8859 test
1bcg00 1b7dA0 9.6e-07 33.3 2888 train
1bhxB0 lautC2 4.4e-14 29.9 8933 train
1bhxBO 1ddjA2 1.8e-10 26.2 8726 train
1bhxBO 1b0OfA2 0.0057 19.0 3165 train
1bhxBO 2kaiB0 0.22 15.0 6991 train
1bylAO 1gtoAO 3.7e-35 58.5 17467 train
1cd2A0 1vdrAO 2.7e-08 24.2 16259 test
1lce7B2 2aaiB2 1.1e-24 51.6 17944 test
1lce7B2 labrB1 0.0041 21.8 4050 test
1lce7B2 1ce7B1 0.12 22.7 3840 test
1ck4BO 1a03A0 1.6e-09 24.0 16822 train
1cl7HO lae6H1 1.9e-28 48.9 19096 test
1cl7HO 2hmiD1 le-10 27.3 12500 test
1cl7HO 2rhe00 0.00051 26.7 5799 test
1cl7HO 1cf8H2 0.1 13.6 5918 test
1cm8A2 lerk02 0 42.8 56043 test
1cm8A2 lagwA2 5.8e-10 24.6 22469 test
1cm8A2 1ckjA2 0.00056 19.6 13187 test
1cm8A2 1csn02 0.29 17.2 11238 test
1cv2A0 1cqwAO 0 48.5 118203 train
1cv2A0 1cqzBO 6.1e-09 13.7 586749 train
1cv2A0 la7uA0 0.004 21.8 35270 train
1cv2A0 1qj4A0 1.2 18.0 17847 train
lcvuAl 1xkbAl 6.6e-06 38.1 617 test
lcvuAl lautLl 0.0046 29.2 701 test
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lcvuAl 1klo02 0.65 28.8 710 test
1dOgR1 lextB1 0.0028 17.2 316 test
leepAO 1b30A0 6.7e-40 37.5 100615 train
leepAO 1rpxAOQ 0.025 18.8 17775 train
leepAO 1gylAO 1.1 19.6 36481 train
lentE2 laptE2 3.7e-33 49.4 29628 train
lentE2 1psn02 3.7e-09 28.2 16910 train
lentE2 Impp02 0.0039 22.9 12557 train
lentE2 1pfzA2 0.11 15.5 7959 train
letpAl 1cnoGO 1.4e-14 44.1 7212 test
letpAl 1fcdC1 0.0012 26.4 2659 test
letpAl 1b7vAO 0.2 25.0 1737 test
lextB1 1tnrR2 0.37 22.0 1065 train
1f21D0 1dokAO 7.4e-10 35.1 2593 train
1f21D0 1ge6D0 0.00092 25.7 1570 train
1f21D0 1tvxBO 1.6 20.5 543 train
1frrAO 1fxiAO 5.8e-28 58.3 10316 test
1frrAO 1glaB1 0.023 24.3 2276 test
1frrAO 1cd4aAl 0.24 25.3 1225 test
1hdaBO 1loutBO 2.2e-35 47.9 23460 test
1hdaBO 1myt00 2.1e-10 26.8 9599 test
1hdaBO 1hbiAO 0.0026 22.3 4883 test
1hdaBO 1lash00 0.12 219 3958 test
1lihbAO lawcBO 1.6e-09 25.9 9350 test
ljafAO 2ccyAO0 1.8e-10 36.4 11138 test
1mpyA2 1dhy02 0.0061 23.7 5245 test
ImpyA2 ImpyAl 0.37 19.3 3639 test
1nfiCl 1iknCO 4.1e-26 42.6 13248 test
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1nfiCl 1a02N2 0.013 18.7 2338 test
1p3801 1jnk01 4.6e-27 43.3 12894 train
1p3801 1vr2Al 0.00081 23.0 2917 train
1p3801 1bygAl 0.35 17.7 1290 train
1gkmAO 1gktAO 0 57.0 82962 test
1gkmAO 1dkfBO 1.3e-10 19.9 19257 test
1gkmAO 2prgB0 0.0021 20.2 17130 test
1gkmAO 1gwxAO 0.96 16.4 12728 test
1rds00 1fus00 le-24 54.6 11891 train
1rds00 1rtu00 7.6e-10 314 8707 train
1rmg00 1czfAO 3.7e-08 19.7 54615 train
1svy00 1dOnA2 1.3e-15 36.0 6915 train
1svy00 1dOnA4 0.0082 21.3 1842 train
1svy00 1dOnA6 0.18 23.4 1860 train
1tmo04 leulA4 3.9e-37 52.0 36455 train
1tmo04 1fdio4 0.0095 22.3 4410 train
1tmo04 2napA4 1.3 19.1 4341 train
2hpdA0 1egyA0 2.3e-07 19.5 81064 test
3sxIA2 1b7fAl 0.00017 25.6 280 train
3sxIA2 1hal02 0.0022 17.1 323 train
3sxIA2 1urnAO 0.17 15.6 799 train
4mdhA2 1bdmB2 2e-38 49.4 37450 test
4mdhA2 1d3aAl 0.022 20.9 7201 test
4mdhA2 1ldmO02 0.29 20.5 6898 test
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Appendix B

Sample Statistics

Table B.1. Training Sample Sizes

The number of edges for each scoring parameter combinatinear-optimal neighborhood in the
training sample.

| Neighborhood|| BLOSUM50 -10/-2| BLOSUMS50 -12-2| BLOSUM62 -11/-1| Combined|

Optimal 7271 7158 7223 21652
95% 17482 15249 14042 46773
75% 127634 114691 106611 348936
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Table B.2. Testing Sample Sizes

The number of edges for each scoring parameter combinatinear-optimal neighborhood in the
test sample.

| Neighborhood|| BLOSUMS50 -10/-2| BLOSUMS50 -12-2| BLOSUM62 -11/-1| Combined|
Optimal 6576 6433 6525 19534
95% 12880 11220 10735 34835
75% 83798 70518 75636 229952




Appendix C

Model Factor ANOVA Results

ANOVA results determining whether model parameter esematere independent of sample size

and scoring parameter combination for each of the 4 possésj@onse thresholds.

[1] "Threshold: 1"
[1] "Robust"

Df  Sum Sq Mean Sgq F val ue Pr(>F)
factor(sanple) 4 0.06091 0.01523 0.1231 0.9714
factor(al g) 3 0.33994 0.11331 0.9161 0.4623
Resi dual s 12 1.48424 0.12369
[1] "Frequency"

Df  Sum Sg Mean Sgq F val ue Pr(>F)
factor(sanple) 4 0.14596 0.03649 0.4473 0.7725
factor(al g) 3 0.30795 0.10265 1.2583 0.3324
Resi dual s 12 0.97891 0. 08158
[1] "Maxi mum bits- per-position"

Df Sum Sq Mean Sq F val ue Pr(>F)
factor(sanple) 4 0.1620 0.0405 0.1929 0.9374358

factor(al g) 3 9.7937 3.2646 15.5503 0.0001953 ***

Resi dual s 12 2.5192 0.2099

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 “*' 0.05 ‘.” 0.1 ° ' 1
[1] "Threshold: 2"

[1] "Robust"

Df  Sum Sg Mean Sg F val ue Pr(>F)

factor(sanple) 4 0.07963 0.01991 0.1162 0.9742
factor(alg) 3 0.66266 0.22089 1.2896 0.3227
Resi dual s 12 2.05534 0.17128

[1] "Frequency"

Df  Sum Sg Mean Sq F val ue Pr(>F)
factor(sanple) 4 0.14190 0.03547 0.2787 0.8861
factor(al g) 3 0.59148 0.19716 1.5490 0.2528
Resi dual s 12 1.52743 0.12729
[1] " Maxi mum bits- per-position"

Df  Sum Sg Mean Sgq F val ue Pr (>F)
factor(sanple) 4 0.5443 0.1361 0.4915 0.7423000

factor(al g) 3 10.1426 3.3809 12.2110 0.0005876 ***
Resi dual s 12 3.3225 0.2769
Signif. codes: 0 ‘*** 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘." 0.1 ° " 1

[1] "Threshold: 3"

[1] "Robust"

Df Sum Sq Mean Sq F val ue Pr(>F)
factor(sanple) 4 0.3194 0.0799 0.2907 0.8784
factor(al g) 3 0.9764 0.3255 1.1850 0.3566
Resi dual s 12 3.2959 0.2747

[1] "Frequency"

Df  Sum Sq Mean Sgq F val ue Pr(>F)
factor(sanple) 4 0.28262 0.07065 0.3467 0.8413
factor(al g) 3 0.95350 0.31783 1.5597 0.2503
Resi dual s 12 2. 44541 0. 20378
[1] " Maxi mum bits- per-position"
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Df  Sum Sqg Mean Sgq F value  Pr(>F)
factor(sanple) 4 0.3878 0.0969 0.2444 0.907573

factor(al g) 3 12.5553 4.1851 10.5513 0.001106 **
Resi dual s 12 4.7597 0.3966
Signif. codes: 0 ‘*** 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ O.

[1] "Threshold: 4"
[1] "Robust"

Df  Sum Sg Mean Sgq F val ue Pr(>F)
factor(sanple) 4 1.06422 0.26605 1.6891 0.2168
factor(al g) 3 0.61945 0.20648 1.3109 0.3162
Resi dual s 12 1.89015 0. 15751
[1] "Frequency"

Df  Sum Sg Mean Sq F val ue Pr(>F)
factor(sanple) 4 0.66212 0.16553 0.9745 0.4570
factor(al g) 3 0.95178 0.31726 1.8677 0.1889
Resi dual s 12 2.03842 0.16987
[1] " Maxi mum bits- per-position"

Df  Sum Sg Mean Sgq F val ue Pr (>F)
factor(sanple) 4 1.2602 0.3150 1.7121 0.2118
factor(al g) 3 19.7619 6.5873 35.7980 2.89%e-06 ***
Resi dual s 12 2.2082 0.1840

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ O.
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Appendix D

Model Analysis Output

The logistic regession results as returned by R.

[1]
[1] "Formul a used:
struct ~ freq + robust + nbits
[1] "glmprint:"

Call: glmformula = formula, famly = binom al, data = trainSet)
Coefficients:
(Intercept) freq r obust nmbits

-9. 806 4.720 5. 905 2.068

Degrees of Freedom 4999 Total (i.e. Null); 4996 Residual
Nul | Devi ance: 6237
Resi dual Deviance: 3440 AIC. 3448
[1] "gl msummary:"
Cal | :
glmfornmula = formula, fam|ly = binonial, data = trainSet)
Devi ance Resi dual s:

Mn 1Q Median 3Q Max
-2.0689 -0.3647 -0.2583 0. 5933 2.9445
Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -9.8063 1.9190 -5.110 3.22e-07 ***

freq 4.7204 0.1334 35.382 < 2e-16 ***

robust 5.9045 2.0161 2.929 0.00340 **

nbits 2.0680 0.1848 11.188 < 2e-16 ***

Signif. codes: 0 ‘***' 0.001 ‘**' 0.01 ‘“*" 0.05 ‘.” 0.1 "' 1

(Di spersion paraneter for binomal family taken to be 1)
Nul | deviance: 6236.6 on 4999 degrees of freedom
Resi dual deviance: 3440.4 on 4996 degrees of freedom
Al C. 3448.4
Nunber of Fisher Scoring iterations: 5
[1] "gl manova:"
Anal ysi s of Deviance Table
Model : binomial, link: |ogit
Response: struct
Terns added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev P(>|Chi|)

NULL 4999 6236. 6
freq 1 2634.8 4998 3601. 9 0.0
r obust 1 15.7 4997 3586.1 7.345e-05
nbits 1 145.8 4996 3440.4 1.460e-33
[1] "plot glnt
[1] "predict”
[1] "ROC
[1] "Area under ROC curve:"
Model Area.adj p. adj Area p-val ue bi norm area
1 Model 1 0.890626 0 0.890626 0 NA

Logi stic Regression Mdel
Irm(formula = fornula, data = trainSet, x = TRUE, y = TRUE, naxit = 20)
Frequenci es of Responses

1

3421 1579
Obs Max Deriv Mdel L.R d.f. P C Dxy
5000 S5e-11 2796. 25 3 0 0.908 0.817
Gamma Tau-a R2 Brier

0. 819 0. 353 0.601 0.104
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Coef S. E wald z P
Intercept -9.806 1.9191 -5.11 0.0000

freq 4.720 0.1334 35.38 0.0000
r obust 5.905 2.0162 2.93 0.0034
nbits 2.068 0.1849 11.19 0.0000
[1] "Irm gof"
Sum of squared errors Expect ed val ue| HO SD
5.199493e+02 5. 325435e+02 2.005560e+00
z P
-6.279619e+00 3.394047e-10

[1]
[1] "Fornul a used:
struct ~ freq * robust * nbits
[1] "glmprint:"

Call: glm(fornmula = fornula, family = binomal, data = trainSet)
Coefficients:
(Intercept) freq robust nbits
41. 48 -49. 35 -46. 07 -111. 69
freq: robust freq:mbits robust:mbits freq:robust:nmbits
54.39 76.91 113.77 -71.99
Degrees of Freedom 4999 Total (i.e. Null); 4992 Residual
Nul | Devi ance: 6237

Resi dual Deviance: 3118 AIC: 3134
[1] "gl m summary: "
Call:
gln(formula = fornula, famly = binom al, data = trainSet)
Devi ance Residual s:
Mn 1Q Median 3Q Max
-2.9195 -0.3509 -0.1939 0.2794 3.2653
Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 41. 484 6.563  6.321 2.60e-10 ***
freq -49. 354 7.788 -6.337 2.34e-10 ***
robust -46.071 6.857 -6.719 1.83e-11 ***
nbits -111. 693 27.111 -4.120 3.79e-05 ***
freq: robust 54.390 8.109 6.707 1.99e-11 ***
freq:nbits 76.912 34.416 2.235 0.0254 *
robust: nbits 113. 770 28. 346 4.014 5.98e-05 ***
freq:robust:nbits -71.989 35.850 -2.008 0. 0446 *
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 “*' 0.05 ‘.” 0.1 ° ' 1

(Di spersion paraneter for binomal famly taken to be 1)
Nul | deviance: 6236.6 on 4999 degrees of freedom
Resi dual deviance: 3118.1 on 4992 degrees of freedom
AC 3134.1
Nunber of Fisher Scoring iterations: 7
[1] "gl manova:"
Anal ysi s of Deviance Table
Model : binomial, link: |ogit
Response: struct
Terms added sequentially (first to |ast)
Df Deviance Resid. Df Resid. Dev P(>|Chi|)

NULL 4999 6236. 6
freq 1 2634.8 4998 3601.9 0.0
robust 1 15.7 4997 3586.1 7. 345e-05
nbits 1 145.8 4996 3440. 4 1. 460e-33
freq: robust 1 11.7 4995 3428.7 6.237e-04
freq:nbits 1 279.3 4994 3149.4 1. 092e-62
robust: nbits 1 27.1 4993 3122.4 1. 976e-07
freqg:robust:nbits 1 4.2 4992 3118.1 3.957e-02
[1] "plot glnt
[1] "predict”
[1] "RoC
[1] "Area under ROC curve:"

Model Area.adj p. adj Area p-val ue bi norm area
1 Model 1 0.908444 0 0.908444 0 NA

Logi stic Regression Mdel
Irm(formula = fornula, data = trainSet, x = TRUE, y = TRUE, naxit = 20)
Frequenci es of Responses

1

3421 1579
OCbs Max Deriv Mdel L.R d.f. P C Dxy
5000 2e-10 3118.5 7 0 0.928 0. 855
Gamma Tau-a R2 Brier
0. 856 0.37 0. 651 0. 099
Coef S.E wald Z P
I ntercept 41.48 6.563 6.32 0.0000
freq -49.35 7.788 -6.34 0.0000
robust -46.07 6.857 -6.72 0.0000
nbits -111.69 27.111 -4.12 0.0000
freq * robust 54.39 8.109 6.71 0.0000
freq * nmbits 76.91 34.416 2.23 0.0254
robust * nbits 113.77 28.346 4.01 0.0001
freq * robust * mbits -71.99 35.850 -2.01 0.0446
[1] "lrm gof"
Sum of squared errors Expect ed val ue| HO SD
494. 9982380 493. 2419211 2. 0653061
z P
0. 8503906 0. 3951080

[1]
[1] "Formul a used:
struct ~ poly(freq, 2) + poly(robust, 2) + poly(nbits, 2)
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[1] "glmprint:"
Call: glm(fornmula = fornula, family = binomal, data = trainSet)
Coefficients:

(Intercept) poly(freq, 2)1 poly(freq, 2)2 poly(robust, 2)1
-1.503 153. 176 -9.012 14. 224
pol y(robust, 2)2 poly(nbits, 2)1 pol y(nbits, 2)2
13.525 45. 554 -22.094

Degrees of Freedom 4999 Total (i.e. Null); 4993 Residual
Nul | Devi ance: 6237
Resi dual Devi ance: 3372 AIC. 3386
[1] "gl m summary: "
Cal | :
glmfornmula = formula, fam |y = binonial, data = trainSet)
Devi ance Resi dual s:

Mn 1Q Median 3Q Max
-2.0035 -0.3220 -0.2718 0.5070 3.1777
Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.50335 05943 -25.297 < 2e-16 ***
poly(freq, 2)1  153.17566 59308 33.349 < 2e-16 ***
poly(freq, 2)2  -9.01214 89360 -3.115 0.00184 **

pol y(robust, 2)1 14.22428
pol y(robust, 2)2 13.52522
poly(nbits, 2)1 45. 55368
pol y(nbits, 2)2 -22.09358
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 “*' 0.05 ‘.” 0.1 ° ' 1
(Di spersion paraneter for binomal famly taken to be 1)

Nul | deviance: 6236.6 on 4999 degrees of freedom
Resi dual deviance: 3371.9 on 4993 degrees of freedom
Al C. 3385.9
Nunber of Fisher Scoring iterations: 6
[1] "gl manova:"
Anal ysi s of Deviance Table
Model : binomial, link: |ogit
Response: struct
Terms added sequentially (first to |ast)

Df Deviance Resid. Df Resid. Dev P(>|Chil|)

07510 4.626 3.73e-06 ***
78759 4.852 1.22e-06 ***
92487 11.606 < 2e-16 ***
48996 -6.331 2.44e-10 ***

wWwhwh kO

NULL 4999 6236. 6
pol y(freq, 2) 2  2635.5 4997 3601. 1 0.0
pol y(robust, 2) 2 46.0 4995 3555.1 1. 006e-10
pol y(mbits, 2) 2 183.2 4993 3371.9 1.639-40
[1] "plot glnt
[1] "predict”
[1] "ROC!
[1] "Area under ROC curve:"

Model Area. adj p.adj Area p-val ue binorm area
1 Model 1 0.8973603 0 0.8973603 NA

Logi stic Regression Mdel
Irm(formula = fornula, data = trainSet, x = TRUE, y = TRUE, naxit = 20)
Frequenci es of Responses

0 1
3421 1579
Cbs Max Deriv Mdel L.R d.f. P C
5000 le-09 2864. 75 6 0 0. 909
Gamma Tau-a R2 Brier
0.82 0. 354 0.612 0. 102
Coef S.E wald Zz P
Intercept -1.503 0.05943 -25.30 0.0000
1 153.176 4.59308 33.35 0.0000
2 -9.012 2.89360 -3.11 0.0018
1 14.224 3.07510 4.63 0.0000
2 13.525 2.78759 4.85 0.0000
1 45.554 3.92488 11.61 0.0000
2 -22.094 3.48997 -6.33 0.0000
[1] "lrmgof"
Sum of squared errors Expect ed val ue| HO SD
509. 008457 522. 269358 1.538323
z P
-8.620361 0. 000000

Dxy
0.818

[1 -
[1] "Formul a used:
struct ~ poly(freq, 2) * poly(robust, 2) * poly(nbits, 2)
[1] "glmprint:"
Call: glmformula = formula, famly = binom al, data = trainSet)
Coefficients:
(Intercept)
-1.198e+00
poly(freq, 2)1
1. 468e+02
poly(freq, 2)2
1.382e+01
pol y(robust, 2)1
4.622e+01
pol y(robust, 2)2
3.117e+01
pol y(nbits, 2)1
2.937e+01
pol y(nbits, 2)2
- 3. 813e+00
pol y(freq, 2)1:poly(robust, 2)1
5. 705e+02
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pol y(freq, 2)2:poly(robust, 2)1
1.951e+03
pol y(freq, 2)1:poly(robust, 2)2
- 3.682e+02
pol y(freq, 2)2:poly(robust, 2)2
1.417e+03
poly(freq, 2)1:poly(nbits, 2)1
2.908e+03
poly(freq, 2)2:poly(nbits, 2)1
7.887e+02
poly(freq, 2)1:poly(nbits, 2)2
-1.919e+03
poly(freq, 2)2:poly(mbits, 2)2
4.938e+02
pol y(robust, 2)1:poly(mbits, 2)1
7.819e+03
pol y(robust, 2)2:poly(mbits, 2)1
4.536e+03
pol y(robust, 2)1:poly(mbits, 2)2
3. 675e+03
pol y(robust, 2)2:poly(nbits, 2)2
2.267e+03
pol y(freq, 2)1:poly(robust, 2)1:poly(nbits, 2)1
-2.378e+05
poly(freq, 2)2:poly(robust, 2)1:poly(nbits, 2)1
2.085e+05
pol y(freq, 2)1:poly(robust, 2)2:poly(nmbits, 2)1
-2.057e+05
pol y(freq, 2)2:poly(robust, 2)2:poly(mdits, 2)1
1.260e+05
pol y(freq, 2)1:poly(robust, 2)1:poly(mbits, 2)2
-1.279e+05
pol y(freq, 2)2:poly(robust, 2)1:poly(mbits, 2)2
1.356e+05
pol y(freq, 2)1:poly(robust, 2)2:poly(mdits, 2)2
- 1. 554e+05
pol y(freq, 2)2:poly(robust, 2)2:poly(mdits, 2)2
9. 515e+04

Degrees of Freed
Nul I Devi ance:
Resi dual Devi anc
[1] "gl m summary
Call:

om 4999 Total (i.e. Null); 4973 Residua

6237
e: 3025 AIC 3079

, data = trainSet)

gln(formula = fornula, fam |y = binom al
Devi ance Residual s
Mn 1Q Median 3Q Max
-2.5832 -0.3931 -0.1777 0.1821 4.5436
Coefficients:
(Intercept)
poly(freq, 2)1
poly(freq, 2)2
pol y(robust, 2)1
pol y(robust, 2)2
poly(nbits, 2)1
pol y(nbits, 2)2
pol y(freq, 2)1:poly(robust, 2)1
pol y(freq, 2)2:poly(robust, 2)1
pol y(freq, 2)1:poly(robust, 2)2
pol y(freq, 2)2:poly(robust, 2)2
poly(freq, 2)1:poly(nbits, 2)1
poly(freq, 2)2:poly(nbits, 2)1
poly(freq, 2)1:poly(nbits, 2)2
poly(freq, 2)2:poly(nmbits, 2)2
pol y(robust, 2)1:poly(mbits, 2)1
pol y(robust, 2)2:poly(mbits, 2)1
pol y(robust, 2)1:poly(mbits, 2)2
pol y(robust, 2)2:poly(nmbits, 2)2
poly(freq, 2)1:poly(robust, 2)1:poly(mbits, 2)1
pol y(freq, 2)2:poly(robust, 2)1:poly(mbits, 2)1
pol y(freq, 2)1:poly(robust, 2)2:poly(mdits, 2)1
pol y(freq, 2)2:poly(robust, 2)2:poly(nbits, 2)1
pol y(freq, 2)1:poly(robust, 2)1:poly(nbits, 2)2
pol y(freq, 2)2:poly(robust, 2)1:poly(nbits, 2)2
pol y(freq, 2)1:poly(robust, 2)2:poly(nbits, 2)2
pol y(freq, 2)2:poly(robust, 2)2:poly(nmbits, 2)2
(Intercept)
poly(freq, 2)1
poly(freq, 2)2
pol y(robust, 2)1
pol y(robust, 2)2
poly(nbits, 2)1
pol y(nbits, 2)2
poly(freq, 2)1:poly(robust, 2)1
poly(freq, 2)2:poly(robust, 2)1
poly(freq, 2)1:poly(robust, 2)2
pol y(freq, 2)2:poly(robust, 2)2
poly(freq, 2)1:poly(mbits, 2)1
poly(freq, 2)2:poly(nbits, 2)1
poly(freq, 2)1:poly(nbits, 2)2
poly(freq, 2)2:poly(nbits, 2)2

Estimate Std. Error z value

. 198e+00
468e+02
382e+01
622e+01
117e+01
937e+01
813e+00
705e+02
951e+03
682e+02
417e+03
908e+03
887e+02
919e+03
938e+02
819e+03
536e+03
675e+03
267e+03
378e+05
085e+05
057e+05
260e+05
279e+05

. 356e+05

. 554e+05

. 515e+04
Pr(>|z|)

< 2e-16 ***
< 2e-16 ***
013552 *
001781 **
071264
018246
715352
528176
000289 ***
739535
026314 *
000279 ***
130775
003467 **
257598

OPPPENNNNORNRARENDNDRLOROONORERPE

*

coooo00o000o00R

1.
7.944e+00
5. 598e+00
1. 479e+01
1.728e+01
1.244e+01
1. 046e+01
9. 044e+02
5.382e+02
1.108e+03
6. 378e+02
8. 002e+02
5.220e+02
6. 566e+02
4
1
1
1
1
8
5
1
6
6
4
9
5

214e-01

362e+02

. 407e+03
. 699e+03
. 068e+03
. 445e+03
.572e+04
. 229e+04
. 082e+05
.127e+04
. 493e+04
. 149e+04
. 197e+04
. 030e+04

PROPNPONPONORNRPONO®WOONE

9
18.
2

862
476
469

3.125

804
361
365
631
625
332
222
634
511
923
132
557
670
442
569
774
987
901
057
970
268
689
892
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pol y(robust, 2)1:poly(mbits, 2)1 2. 74e-08 ***
pol y(robust, 2)2:poly(mbits, 2)1 0.007592 **
pol y(robust, 2)1:poly(nbits, 2)2 0. 000578 ***
pol y(robust, 2)2:poly(nbits, 2)2 0.116748

pol y(freq, 2)1:poly(robust, 2)1:poly(nbits, 2)1 0.005533 **
pol y(freq, 2)2:poly(robust, 2)1:poly(nbits, 2)1 6.70e-05 ***
pol y(freq, 2)1:poly(robust, 2)2:poly(nbits, 2)1 0.057317 .
pol y(freq, 2)2:poly(robust, 2)2:poly(nbits, 2)1 0.039712 *
pol y(freq, 2)1:poly(robust, 2)1:poly(nbits, 2)2 0.048795 *
pol y(freq, 2)2:poly(robust, 2)1:poly(nbits, 2)2 0.001083 **
pol y(freq, 2)1:poly(robust, 2)2:poly(nbits, 2)2 0.091129 .
pol y(freq, 2)2:poly(robust, 2)2:poly(mbits, 2)2 0.058549 .
Signif. codes: 0 ‘***' 0.001 ‘**' 0.01 ‘“*" 0.05 ‘.” 0.1 "' 1

(Di spersion paraneter for binomal family taken to be 1)
Nul | deviance: 6236.6 on 4999 degrees of freedom
Resi dual devi ance: 3024.8 on 4973 degrees of freedom
Al C. 3078.8
Nunber of Fisher Scoring iterations: 9
[1] "gl manova: "
Anal ysi s of Deviance Tabl e
Mbdel : binomi al, link: |ogit
Response: struct
Terns added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev

NULL 4999 6236. 6
poly(freq, 2) 2  2635.5 4997 3601. 1
pol y(robust, 2) 2 46.0 4995 3555.1
poly(nbits, 2) 2 183.2 4993 3371.9
pol y(freq, 2):poly(robust, 2) 4 35.0 4989 3336.8
poly(freq, 2):poly(nmbits, 2) 4 246. 6 4985 3090. 2
pol y(robust, 2):poly(nbits, 2) 4 30.8 4981 3059. 4
pol y(freq, 2):poly(robust, 2):poly(nbits, 2) 8 34.5 4973 3024.8
P(>| Chi |)
NULL
poly(freq, 2) 0.0

pol y(robust, 2) 1. 006e- 10
pol y(nbits, 2) 1. 639e-40
pol y(freq, 2):poly(robust, 2) 4.550e-07
poly(freq, 2):poly(mbits, 2) 3. 444e-52
pol y(robust, 2):poly(nbits, 2) 3. 322e-06
pol y(freq, 2):poly(robust, 2):poly(nbits, 2) 3.255e-05
[1] "plot glnt

[1] "predict”
[1] "ROC!
[1] "Area under ROC curve:"
Model Area. adj p.adj Area p-val ue binorm area
1 Model 1 0.9070894 0 0.9070894 NA

Logi stic Regression Mdel
Irm(formula = fornula, data = trainSet, x = TRUE, y = TRUE, naxit = 20)
Frequenci es of Responses

0 1
3421 1579
Obs Max Deriv Mdel L.R d.f. P C Dxy
5000 3e-09 3211.79 26 0 0.931 0. 862
Gamma Tau-a R2 Brier
0. 863 0.373 0. 665 0. 097
Coef S.E wald z P
Intercept -1.198e+00 1.214e-01 -9.86 0.0000
1 1.468e+02 7.944e+00 18.48 0.0000
2 1.382e+01 5.598e+00 2.47 0.0136
1 4,.622e+01 1.479e+01 3.12 0.0018
2 3.117e+01 1.728e+01 1.80 0.0713
1 2.937e+01 1.244e+01 2.36 0.0182
2 -3.813e+00 1.046e+01 -0.36 0.7154
1+*1 5.705e+02 9. 044e+02 0.63 0.5282
2*1 1.951e+03 5.382e+02 3.62 0.0003
1*2 -3.682e+02 1.108e+03 -0.33 0.7395
2* 2 1.417e+03 6.378e+02 2.22 0.0263
1+*1 2.908e+03 8.002e+02 3.63 0.0003
2+ 1 7.887e+02 5.220e+02 1.51 0.1308
1*2 -1.919e+03 6.566e+02 -2.92 0.0035
2 * 2 4,938e+02 4.362e+02 1.13 0.2576
1*1 7.819e+03 1.407e+03 5.56 0.0000
2* 1 4,.536e+03 1.699e+03 2.67 0.0076
1*2 3.675e+03 1.068e+03 3.44 0.0006
2* 2 2.267e+03 1.445e+03 1.57 0.1167
1*1* 1-2.378e+05 8.572e+04 -2.77 0.0055
2* 1* 1 2. 085e+05 5.229e+04 3.99 0.0001
1* 2* 1-2.057e+05 1.082e+05 -1.90 0.0573
2* 2* 1 1. 260e+05 6.127e+04 2.06 0.0397
1* 1* 2-1.279e+05 6.493e+04 -1.97 0.0488
2 * 1* 2 1.356e+05 4.149e+04 3.27 0.0011
1* 2* 2 -1.554e+05 9.197e+04 -1.69 0.0911
2 * 2* 2 9.515e+04 5.030e+04 1.89 0.0585
[1] "lrmgof"
Sum of squared errors Expect ed val ue| HO SD
4.839148e+02 4.791093e+02 9.819274e- 01
z P
4.893871e+00 9.887179e-07

Anal ysi s of Deviance Tabl e
Mbdel 1: struct ~ freq + robust + nbits
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Model 2: struct ~ freq * robust * nbits
Resid. Df Resid. Dev Df Deviance P(>| Chi|)

1 4996 3440. 4

2 4992 3118.1 4 322.3 1. 714e-68

Anal ysi s of Deviance Tabl e

Mbdel 1: struct ~ freq + robust + nbits

Model 2: struct ~ poly(freq, 2) + poly(robust,
Resid. Df Resid. Dev Df Devi ance P(>| Chi|)

1 4996 3440. 4

2 4993 3371.9 3 68.5 8.962e-15

Anal ysi s of Deviance Tabl e

Model 1: struct ~ freq + robust + nmbits

Model 2: struct ~ poly(freq, 2) * poly(robust,
Resid. Df Resid. Dev Df Deviance P(>| Chi|)

1 4996 3440. 4

2 4973 3024.8 23 415.5 1.119e-73

Anal ysi s of Deviance Table

Model 1: struct ~ freq * robust * nbits

Model 2: struct ~ poly(freq, 2) + poly(robust,
Resid. Df Resid. Dev Df Devi ance P(>| Chi|)

1 4992 3118.1

2 4993 3371.9 -1 -253.8 3.943e-57

Anal ysi s of Deviance Tabl e

Mbdel 1: struct ~ freq * robust * nbits

Mbdel 2: struct ~ poly(freq, 2) * poly(robust,
Resid. Df Resid. Dev Df Devi ance P(>| Chi|)

1 4992 3118. 13

2 4973 3024. 84 19 93.29 8.635e-12

Anal ysi s of Deviance Table

Model 1: struct ~ poly(freq, 2) + poly(robust,

Model 2: struct ~ poly(freq, 2) * poly(robust,
Resid. Df Resid. Dev Df Deviance P(>| Chi|)

1 4993 3371.9

2 4973 3024.8 20 347.0 1.813e-61

2)

2)
2)

*

pol y(nbits,

pol y(nbits,

pol y(nbits,

pol y(nbits,

pol y(nbits,
pol y(nbits,

2)

2)

2)

2)

2)
2)
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Appendix E

Final Logistic Regression Models

The final model for a sample size of 5000, combined scoringrpaters, and the response threshold

of 25% (1 of 4 structural alignments) is as follows, whayg is the log odds of structural inclusion:

lsp = —7.418 + (4.374 * frequncy) + (3.919 x robustness) + (1.816 * maxbits) (E.0.1)

The final model for a sample size of 5000, combined scoringrpaters, and the response threshold
of 50% (two of four structural alignments) is as follows, wés;- is the log odds of structural

inclusion:

lsro = —9.806 + (4.720 * frequency) + (5.905 * robustness) + (2.068 x maxbits) (E.0.2)

The final model for a sample size of 5000, combined scoringrpaters, and the response threshold
of 75% (three of four structural alignments) is as followdenels;s is the log odds of structural

inclusion:

lsr3 = —9.857 + (4.692 * frequency) + (5.594 * robustness) + (2.337 x mazbits) (E.0.3)
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The final model for a sample size of 5000, combined scoringrpaters, and the response threshold
of 100% (four of four structural alignments) is as followshevelg;, is the log odds of structural

inclusion:

lsrg = —11.337 + (4.829 * frequency) + (6.152 * robustness) + (3.210 x maxbits) (E.0.4)

The complete R output describing the models and their statifollows.

TRAINNING DIR  train.fam ly.logistic
TEST DR test.famly.logistic

SAWPLE size: 5000 alg id: 95 scr id: 95

[1] "Formul a used: "
struct ~ freq + robust + nbits

[1] "threshol d: 0.25"

[1] "glmprint:"

Call: glm(fornmula = fornula, family = binomal, data = trainSet)
Coefficients:
(I'ntercept) freq robust nbits
-7.418 4.374 3.919 1.816
Degrees of Freedom 4999 Total (i.e. Null); 4996 Residual
Nul | Devi ance: 6375

Resi dual Deviance: 3715 AIC. 3723

[1] "gl msummary:"
Call:
gln(formula = fornula, famly = binom al, data = trainSet)
Devi ance Residual s:

Mn 1Q Median 3Q Max
-1.9683 -0.4220 -0.3045 0. 6491 2.7682
Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -7.4178 1.8625 -3.983 6.81e-05 ***

freq 4.3744 0.1199 36.482 < 2e-16 ***

robust 3.9190 1.9566 2.003 0.0452 *

mits 1.8158 0.1721 10.551 < 2e-16 ***

Signif. codes: 0 ‘***' 0.001 ‘**’ 0.01 ‘* 0.05"'.” 0.1 ' 1

(Di spersion paranmeter for binomal fam |y taken to be 1)
Nul | deviance: 6375.3 on 4999 degrees of freedom

Resi dual deviance: 3714.7 on 4996 degrees of freedom

AlC 3722.7

Nunber of Fisher Scoring iterations: 5

[1] "gl manova: "
Anal ysi s of Deviance Tabl e
Mbdel : binomi al, link: |ogit
Response: struct
Terns added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev P(>|Chi|)

NULL 4999 6375.3

freq 1 2526.9 4998 3848. 3 0.0
robust 1 7.5 4997 3840. 8 6.002e-03
mits 1 126.1 4996 3714.7 2.991e-29

[1] "plot glnt

[1] "ternplot"

2.5 % 97.5 %
(Intercept) -11.06909553 -3. 766462
freq 4.13931518 4.609448
r obust 0. 08313872 7.754844
nbits 1.47839592 2.153122
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[1] "mikes gof"

Sum of squared errors Expect ed val ue| HO SD
5.657670e+02 5.731394e+02 1.847317e+00

z P

- 3.990839e+00 6.583988e- 05

[1] "lIrmprint"”

Logi stic Regression Mdel

Irm(fornmula = formula, data = trainSet, x = TRUE, y = TRUE, naxit
Frequenci es of Responses

0 1
3326 1674
Cbs Max Deriv Mdel L.R d.f. P C
5000 8e- 14 2660. 52 3 0 0.898
Ganmma Tau-a R2 Brier
0.798 0.354 0.573 0.113
Coef S. E wald z P
Intercept -7.418 1.8625 -3.98 0.0001
freq 4.374 0.1199 36.48 0.0000
r obust 3.919 1.9566 2.00 0.0452
nbits 1.816 0.1721 10.55 0.0000
[1] "Irm anova"
wald Statistics Response: struct
Fact or Chi -Square d.f. P
freq 1330. 90 1 <. 0001
robust 4.01 1 0. 0452
nbits 111. 33 1 <. 0001
TOTAL 1554. 34 3 <. 0001
[1] "lrmgof"
Sum of squared errors Expect ed val ue| HO SD
5.657670e+02 5. 731394e+02 1.847317e+00
z P
- 3.990839e+00 6. 583990e- 05
[1] "threshold: 0.5"
[1] "glmprint:"
Call: glmformula = formula, famly = binom al, data = trainSet)
Coefficients:
(Intercept) freq r obust nmits
-9.806 4.720 5. 905 2.068

Degrees of Freedom 4999 Total (i.e. Null); 4996 Residual
Nul I Devi ance: 6237
Resi dual Deviance: 3440 AIC. 3448

[1] "gl msummary:"
Cal | :
glmfornmula = formula, fam|ly = binonial, data = trainSet)
Devi ance Resi dual s:

Mn 1Q Median 3Q Max
-2.0689 -0.3647 -0.2583 0.5933 2.9445
Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -9.8063 1.9190 -5.110 3.22e-07 ***

freq 4.7204 0.1334 35.382 < 2e-16 ***

robust 5.9045 2.0161 2.929 0.00340 **

nbits 2.0680 0.1848 11.188 < 2e-16 ***

Signif. codes: 0 ‘*** 0.001 ‘**’ 0.01 ‘*" 0.05 ‘." 0.1 ° " 1

(Di spersion paraneter for binomal famly taken to be 1)
Nul | deviance: 6236.6 on 4999 degrees of freedom

Resi dual deviance: 3440.4 on 4996 degrees of freedom

Al C. 3448.4

Nunber of Fisher Scoring iterations: 5

[1] "gl manova:"
Anal ysi s of Deviance Table
Model : binomial, link: |ogit
Response: struct
Terns added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev P(>|Chi|)

NULL 4999 6236. 6

freq 1 2634.8 4998 3601.9 0.0
robust 1 15.7 4997 3586.1 7.345e-05
nbits 1 145.8 4996 3440.4 1. 460e-33

[1] "plot glnt

[1] "ternplot"
2.5 % 97.5 %
(Intercept) -13.568352 -6.044214

freq 4.458888 4.981989
robust 1.952034 9.856979
mits 1.705647 2.430403
[1] "mi kes gof"
Sum of squared errors Expect ed val ue| HO SD
5.199493e+02 5. 325435e+02 2.005560e+00
z P

-6.279625e+00 3.393903e-10

= 20)

Dxy
0.795
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[1] "lIrmprint"

Logi stic Regression Mdel

Irm(fornmula = formula, data = trainSet, x = TRUE, y = TRUE, nmaxit
Frequenci es of Responses

0 1
3421 1579
Cbs Max Deriv Mdel L.R d.f. P C
5000 S5e-11 2796. 25 3 0 0.908
Gamma Tau-a R2 Brier
0.819 0. 353 0.601 0. 104

Coef S. E wald z P

Intercept -9.806 1.9191 -5.11 0.0000
freq 4.720 0.1334 35.38 0.0000
robust 5.905 2.0162 2.93 0.0034
nbits 2.068 0.1849 11.19 0.0000
[1] "lrm anova"
Wald Statistics Response: struct

Fact or Chi - Square d.f. P

freq 1251. 44 1 <. 0001

robust 8.58 1 0. 0034

nbits 125. 14 1 <. 0001

TOTAL 1456. 58 3 <. 0001
[1] "lrm gof"
Sum of squared errors Expect ed val ue| HO SD

5.199493e+02 5. 325435e+02 2.005560e+00
z P
-6.279619e+00 3.394047e- 10
[1] "threshold: 0.75"
[1] "glmprint:"
Call: glm(fornmula = fornula, family = binomal, data = trainSet)
Coefficients:
(Intercept) freq robust nbits
-9.857 4.692 5.594 2.337

Degrees of Freedom 4999 Total (i.e. Null); 4996 Residual
Nul I Devi ance: 5948
Resi dual Deviance: 3416 AIC 3424

[1] "gl m summary: "
Call:
gln(formula = fornula, famly = binom al, data = trainSet)
Devi ance Resi dual s:

Mn 1Q Median 3Q Max
-1.9967 -0.3533 -0.2378 0.5003 3.0664
Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -9.8572 1.9130 -5.153 2.57e-07 ***

freq 4.6921 0.1416 33.128 < 2e-16 ***

robust 5.5935 2.0126  2.779 0.00545 **

mits 2.3367 0.1851 12.624 < 2e-16 ***

Signif. codes: 0 ‘*** 0.001 ‘** 0.01 ‘* 0.05°.” 0.1°* "' 1

(Di spersion paraneter for binomal famly taken to be 1)
Nul | deviance: 5948.3 on 4999 degrees of freedom

Resi dual devi ance: 3416.3 on 4996 degrees of freedom

Al C. 3424.3

Nunber of Fisher Scoring iterations: 6

[1] "gl manova: "
Anal ysi s of Deviance Table
Model : binomial, link: |ogit
Response: struct
Terms added sequentially (first to |ast)
Df Deviance Resid. Df Resid. Dev P(>|Chil)

NULL 4999 5948. 3

freq 1 2323.6 4998 3624.7 0.0
robust 1 18.4 4997 3606. 3 1.763e-05
nmits 1 190.0 4996 3416. 3 3.203e-43

[1] "plot glnt

[1] "ternplot”
2.5 % 97.5 %
(Intercept) -13.607566 -6.106786

freq 4.414464 4.969798
r obust 1.648002 9.539068
mbits 1.973856 2.699632
[1] "mikes gof"
Sum of squared errors Expect ed val ue| HO SD
522. 084794 540. 451531 2.048829
z P
- 8. 964505 0. 000000

[1] "lrmprint"

Logi stic Regression Mdel

Irm(fornmula = formula, data = trainSet, x = TRUE, y = TRUE, naxit
Frequenci es of Responses

= 20)

= 20)

Dxy
0.817
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0 1
3590 1410
Cbs Max Deriv Mdel L.R d.f. P C
5000 6e- 10 2532 3 0 0.901
Gamma Tau-a R2 Brier
0. 803 0. 325 0.571 0. 104

Coef S. E vald Z P

Intercept -9.857 1.9130 -5.15 0.0000
freq 4.692 0.1416 33.13 0.0000
r obust 5.594 2.0126 2.78 0.0054
nbits 2.337 0.1851 12.62 0.0000
[1] "lrm anova"
Wald Statistics Response: struct

Fact or Chi -Square d.f. P

freq 1097. 48 1 <. 0001

robust 7.72 1 0. 0054

nbits 159. 36 1 <. 0001

TOTAL 1258. 67 3 <. 0001
[1] "lrm gof"
Sum of squared errors Expect ed val ue| HO SD

522. 084794 540. 451531 2.048829
z P
- 8.964505 0. 000000
[1] "threshold: 1"
[1] "glmprint:"
Call: glm(fornmula = fornula, family = binomal, data = trainSet)
Coefficients:
(Intercept) freq robust nbits
-11.337 4.829 6.152 3.210

Degrees of Freedom 4999 Total (i.e. Null); 4996 Residual
Nul | Devi ance: 5205
Resi dual Deviance: 3093 AIC:. 3101

[1] "gl m summary: "
Call:
gln(formula = fornula, famly = binom al, data = trainSet)
Devi ance Residual s:

Mn 1Q Medi an 3Q Max
-2.51254 -0.34266 -0.18743 -0.08881 3.26720
Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -11.3374 2.0334 -5.576 2.47e-08 ***

freq 4.8294 0.1700 28.415 < 2e-16 ***

robust 6.1516 2.1443 2.869 0.00412 **

mits 3.2095 0.1965 16.332 < 2e-16 ***

Signif. codes: 0 ‘***' 0.001 ‘**’ 0.01 ‘* 0.05 .’ 0.1 ' 1

(Di spersion paraneter for binomal family taken to be 1)
Nul I deviance: 5205.1 on 4999 degrees of freedom

Resi dual deviance: 3092.7 on 4996 degrees of freedom

Al C. 3100.7

Nunber of Fisher Scoring iterations: 6

[1] "gl manova: ™"
Anal ysi s of Deviance Tabl e
Mbdel : binomi al, link: |ogit
Response: struct
Terns added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev P(>|Chi|)

NULL 4999 5205.1

freq 1 1737.6 4998 3467. 4 0.0
robust 1 32.2 4997 3435.2 1.364e-08
mits 1 342.5 4996 3092.7 1.858e-76

[1] "plot glnt

[1] "ternplot"
2.5 % 97.5 %
(Intercept) -15.323762 -7.351127

freq 4.496200 5.162586

r obust 1.947861 10. 355392

nbits 2.824279 3.594784

[1] "mi kes gof"

Sum of squared errors Expect ed val ue| HO SD
470. 28502 494.90148 2.19845

z P

-11.19719 0. 00000

[1] "lrmprint"

Logi stic Regression Mdel

Irm(formula = fornula, data = trainSet, x = TRUE, y = TRUE, naxit
Frequenci es of Responses

0 1
3925 1075
Cbs Max Deriv Mdel L.R d.f. P C
5000 le-07 2112. 34 3 0 0. 895

Gamma Tau-a R2 Brier

= 20)

Dxy
0.801

Dxy
0.79
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0.793 0. 267 0.533 0.094
Coef S.E wald Z P
Intercept -11.337 2.0334 -5.58 0.0000

freq 4.829 0.1700 28.41 0.0000

r obust 6.152 2.1443 2.87 0.0041

nbits 3.210 0.1965 16.33 0.0000

[1] "Irm anova"

wald Statistics Response: struct

Fact or Chi -Square d.f. P

freq 807. 36 1 <. 0001

robust 8.23 1 0. 0041

nbits 266. 74 1 <. 0001

TOTAL 941. 56 3 <. 0001

[1] "lrmgof"
Sum of squared errors Expect ed val ue| HO SD

470. 28502 494.90148 2.19845
z P

-11.19719 0. 00000



